

Modelli di programmazione aggregata della produzione

Lucidi per gli allievi del corso di Gestione della Produzione Industriale del II° anno

Ipotesi:

- Monoprodotto
- Domanda prevedibile (determ.)
- Tempi e costi di setup trascurabili
- No backlog

Funzione obiettivo:

$$Min(Z) = \sum_{1}^{T} \left[\underline{m(t)} * X(t) + \underline{i(t)} * INV(t) \right]$$

$$+\sum_{t=0}^{T} [r(t)*W(t)+s(t)*S(t)]$$

Vincoli:

$$X(t) + INV(t-1) - INV(t) = D(t)$$

$$h(t) * X(t) = W(t) + S(t)$$

$$0 \le W(t) \le MAXW(t)$$

$$0 \le S(t) \le MAXS(t)$$

$$INV(t) \ge 0$$

- Ipotesi
 - Multiprodotto
 - Monomacchina
 - Domanda prevedibile (deterministica)
 - Tempi di setup trascurabili
 - Setup indipendenti dalla sequenza
 - No backlog

Simbologia

```
    X(i,t) quantità da produrre di i in t
```

```
    Cp(t) capacità disponibile in t
```

```
    D(i,t) domanda del prodotto i nel periodo t
```

```
    e(i,t) eccesso di produzione vs domanda fino a t
```

```
    c(i,t) costo unitario di mantenimento a scorta
```

```
 a(i,t) costo di setup di i al periodo t
```

$$-k(i,t) = 0$$
 se non si produce, 1 se si produce

Funzione obiettivo

$$Min(z) = \sum_{i=1}^{I} \sum_{t=1}^{T} [k(i,t) \times a(i,t)] +$$

$$+\sum_{i=1}^{I}\sum_{t=1}^{T}\left[c(i,t)\times e(i,t)\right]$$

Vincoli

$$e(i,t) = \sum_{j=1}^{t} X(i,j) - \sum_{j=1}^{t} D(i,j)$$

$$e(i,t) \ge 0 \ \forall i, \forall t \quad \text{(no backlog)}$$

$$\sum_{i=1}^{I} X(i,t) \le Cp(t) \ \forall t \quad \text{(rispetto capacità)}$$

Wagner - Whitin

- Ipotesi
 - Monoprodotto
 - Domanda prevedibile (deterministica)
 - Capacità infinita
 - Costo prod./acq. costante nel tempo
 - Setup solo come costi
 - No backlog

Wagner - Whitin

Il funzionale ricorsivo

$$f_t(INV) = Min \left[i(t-1) * INV + \tau(X(t)) * a(t) + \tau(X(t)) * A(t) + \tau(INV + X(t) - D(t)) \right]$$

Wagner - Whitin

dove

$$\tau (X(t)) = 0$$
, se $X(t) = 0$,
 $\tau (X(t)) = 1$, se $X(t) > 0$
con i vincoli $(\forall t)$
 $X(t) \ge 0$
 $INV \ge 0$,
 $INV + X(t) \ge D(t)$

Esiste una soluzione ottima per la quale:

$$INV*X(t)=0$$

$$\forall t$$

 Se in un periodo t si verifica che INV=0, allora è ottimale considerare i periodi da 0 a t indipendentemente dai successivi

$$f_{t-1}(INV) = Min [i(t-2)*INV + \tau (X(t-1))*a(t-1) + f_t(0)]$$

$$g_{t-1}(INV) = Min [i(t-2)*INV + \tau (X(t-1)*a(t-1)]$$

- Esiste una soluzione ottima per la quale la produzione di un periodo soddisfa un numero intero di domanda di periodo per i periodi successivi
- Se la domanda di un periodo t" è soddisfatta dalla produzione del periodo t, allora anche la domanda di t' (t<t'<t") è soddisfatta dalla produzione di t.

Sintesi del modello

$$F(t) = Min[A, B]$$
 dove
 $A = a(t) + F(t-1)$

$$B = Min \left[a(j) + \left(\sum_{j=h}^{t-1} \sum_{k=1}^{t} i(k)D(k) \right) + F(j-1) \right]$$

$$F(1) = a(1)$$
$$F(0) = 0$$

$$F(0) = 0$$

- Se al periodo t' il minimo della relazione è ottenuto in corrispondenza di j=t" con t"<=t', allora al periodo t, con t>t', è sufficiente considerare solo t"<=j<=t.
- In particolare se t'=t" è sufficiente considerare solo i programmi per cui X(t')>0.

Esempio applicazione Wagner-Whitin

Mese	D(t)	a(t)	i(t)
1	69	85	1
2	29	102	1
3	36	102	1
4	61	101	1
5	61	98	1
6	26	114	1
7	34	105	1
8	67	86	1
9	45	119	1
10	67	110	1
11	79	98	1
12	56	114	1
1			

Esempio applicazione Wagner-Whitin

Mese	1	2	3	4	5	6
a(t)	85	102	102	101	98	114
D(t)	69	29	36	61	61	26
	85	187	216	287	375	462
		114	223	277	348	401
			186			400
F(t)	85	114	186	277	348	400
Polit.	1	<u>12</u>	<u>123</u>	<u>12 34</u>	<u>123 45</u>	<u>123 456</u>

Politica ottima: <u>1,2 3,4 5,6,7 8,9 10 11,12</u>

- Ipotesi:
 - Multiprodotto
 - Monomacchina
 - Domanda stazionaria
 - Domanda prevedibile (deterministica)
 - Tempi di setup trascurabili
 - Setup indipendenti dalla sequenza
 - No backlog
- Concetto di Campagna:
 - In una campagna di produzione si realizzano in sequenza tutti i prodotti

Simbologia

k indice di prodotto

H giorni lavorativi annui

r(k) ritmo produttivo del prodotto k

D(k) domanda annua del prodotto k

Cm costo unitario di mantenimento a scorta

p(k) costo variabile di produzione di k

a(k) costo di setup del prodotto k

Costo totale di mantenimento a scorta

$$CtotMant = \sum_{k=1}^{K} \frac{p(k) \times Cm \times D(k) \times \left(1 - \frac{D(k)}{H \times r(k)}\right)}{2 \times n_o}$$

Costo totale di setup

$$CtotSetup = n_o \times \sum_{k=1}^{K} a(k)$$

Numero ottimo di campagne

$$n_{o} = \sqrt{\frac{\sum_{k=1}^{K} p(k) \times Cm \times D(k) \times \left(1 - \frac{D(k)}{H \times r(k)}\right)}{2 \times \sum_{k=1}^{K} a(k)}}$$

Il lotto di produzione ad ogni campagna

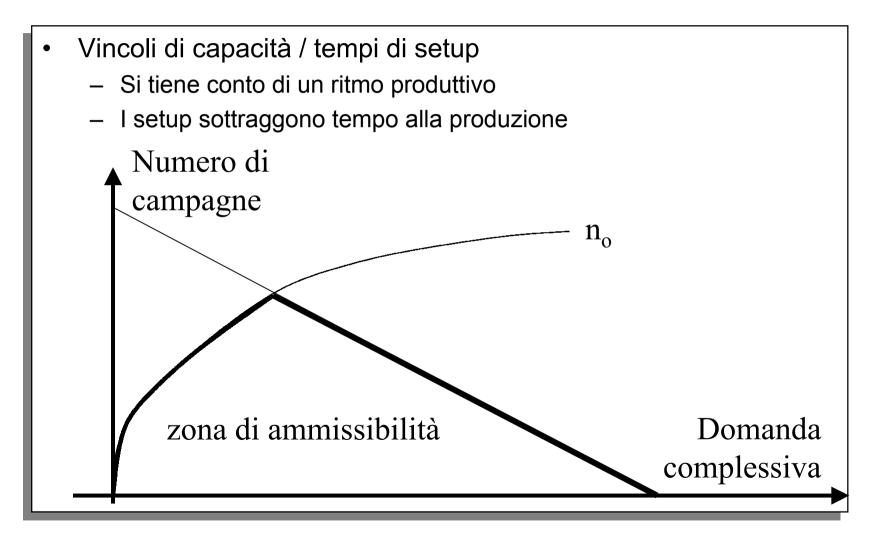
$$Q_o(k) = \frac{D(k)}{n_o}$$

Limiti del modello di Magee Boodman

- Campagne degeneri
- Domanda non stazionaria
- Incertezza nelle previsioni di domanda
- Setup dipendenti dalla sequenza
- Vincoli di capacità
- Tempi di setup

- Campagne degeneri: non sempre conviene produrre a ogni campagna prodotti con domanda limitata e costi di setup elevati:
 - si calcola il lotto economico per ciascuno di questi prodotti considerato separatamente
 - se Q(k) >> Q0(k) si considera la possibilità di produzione a campagne alterne o occasionali
 - si valutano i costi delle varie alternative e si sceglie la soluzione a minor costo complessivo
- Domanda non stazionaria: si utilizza il modello come se la domanda fosse stazionaria:
 - anticipando il trend
 - segmentando il periodo di pianificazione

- Incertezza nelle previsioni di domanda: si utilizzano delle opportune scorte di sicurezza
- Setup dipendenti dalla sequenza: poiché la campagna non vincola sulla sequenza, si ottimizza la sequenza a monte dell'applicazione del modello e si utilizza il costo di setup derivante da tale sequenza



Euristico per la programmazione operativa

 Si basa su R_k, rapporto tra la scorta massima e la scorta media del ciclo

$$SCMax = Q'_o(k) = \frac{D(k)}{n_o} \times \left(1 - \frac{D(k)}{H \times r(k)}\right)$$

$$SCMed = \sum_{k=1}^{K} \frac{Q_o'(k)}{2}$$

Euristico per la programmazione operativa

Da cui

$$R(k) = \frac{2 \times D(k) \times \left(1 - \frac{D(k)}{H \times r(k)}\right)}{\sum_{k=1}^{K} D(k) \times \left(1 - \frac{D(k)}{H \times r(k)}\right)}$$

Euristico per la programmazione operativa

Procedura:

- si calcola una tantum R(k) in occasione del calcolo di no
- si monitorizza il rapporto tra R'(k), fra la scorta istantanea del prodotto k e la scorta media
- quando R'(k) raggiunge R(k) si arresta la produzione del prodotto k
 e si passa a produrre il prodotto per il quale è più basso il rapporto
 tra scorta istantanea e consumo nell'unità di tempo
- NB. Si può perdere ottimizzazione sequenze

II modello di Karni-Roll

- Ipotesi
 - Multiprodotto
 - Domanda di forma qualsiasi
 - Domanda nota deterministicamente
 - Ci sono limiti di capacità produttiva
 - Setup da considerare come costi
 - Non è ammesso backlog

Il modello di Karni-Roll

Prodotti	1	2	3	4
A	100	50 ⁼	30	70
В	60	70	60	20
C		70	40	60
Totale	160	190	130	150
Capacità	170	170	160	160

Il modello di Karni-Roll

Prodotti	1	2	3	4
A	100	40	40	70
В	70	60	60	20
C		70	40	60
Totale	170	170	140	150
Capacità	170	170	160	160

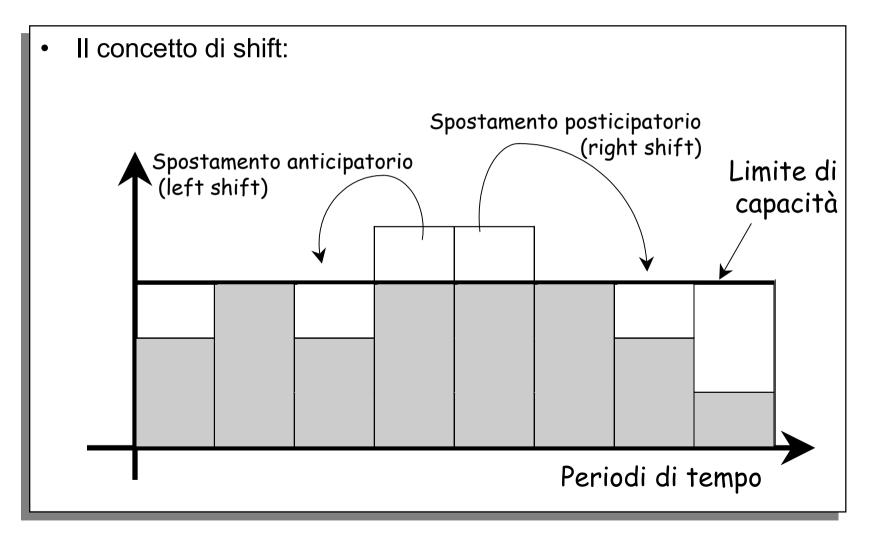
Il modello di Karni-Roll

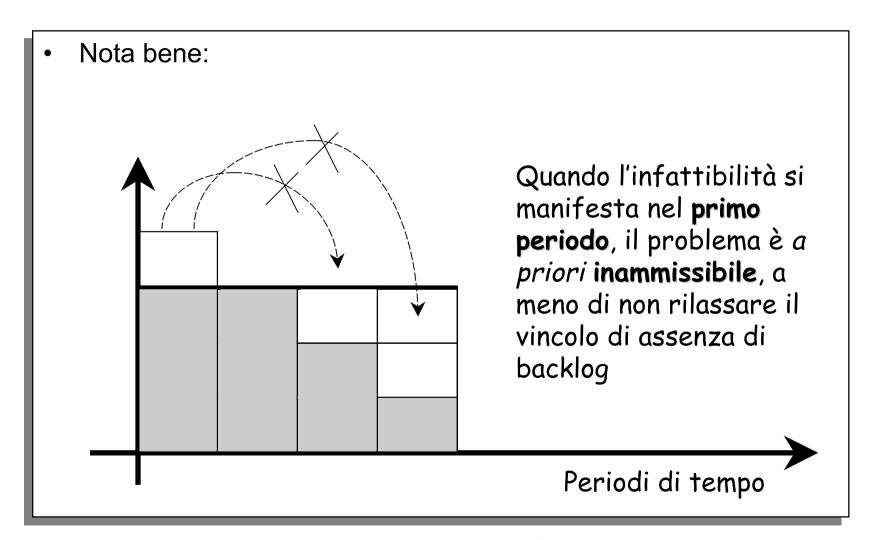
- la formulazione analitica è del tutto simile a quella di PL intera,
 ma il metodo risolutivo è euristico
 - non fornisce la migliore soluzione possibile, dato l'obiettivo e i vincoli, ma una soluzione "ragionevolmente buona" ...
 - per contro è maggiormente applicabile in pratica

II modello di Karni-Roll

- La procedura di funzionamento:
 - si parte dalla soluzione offerta dall'algoritmo di Wagner-Whitin (EOQ dinamico)
 - tale soluzione è il limite inferiore del costo, in quanto effettua un caricamento a capacità infinita
 - se tale soluzione è fattibile, l'algoritmo termina
 - se tale soluzione è infattibile ...
 - il vincolo di capacità produttiva è violato in uno o più periodi
 - ... l'algoritmo cerca una soluzione ammissibile effettuando degli spostamenti (shift) di quantità da un periodo all'altro dell'orizzonte

II modello di Karni-Roll



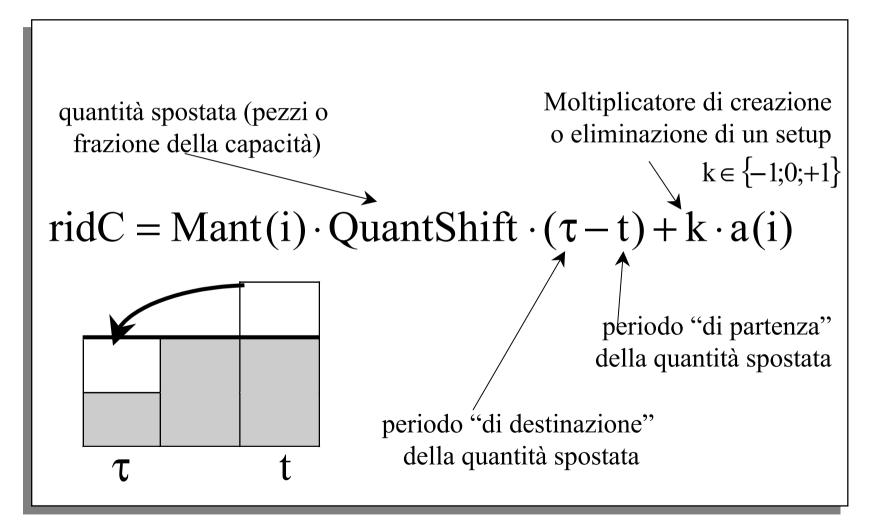


- Caratteristiche degli shift:
 - dimensione, ossia la quantità che deve essere spostata
 - direzione, ossia il numero di periodi (a destra o a sinistra) di cui si effettua lo spostamento
- Obiettivi degli shift:
 - eliminazione dell'infattibilità al minimo costo
 - riduzione del costo complessivo del piano ...
 - costo totale di setup e costo totale di mantenimento a scorta
 - ... attraverso modifiche della matrice del piano

- Regole degli shift:
 - spostare la minor quantità possibile per eliminare le infattibilità
 - spostare la maggior quantità possibile per ridurre il costo di mantenimento
 - spostare tutta la quantità possibile per:
 - eliminare un setup
 - ridurre il costo di mantenimento senza generare nuovi setup
 - spostare a destra (posticipare) la maggior quantità possibile senza generare infattibilità
 - spostare a sinistra (anticipare) la minor quantità possibile senza generare infattibilità

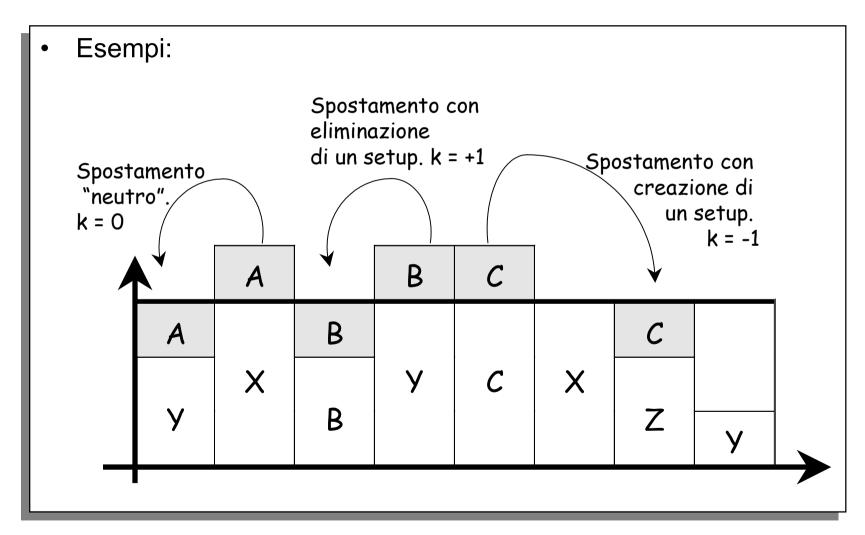
- L'effetto di ciascuno shift si valuta in termini di riduzione del costo del piano (ridC) e sovrapponendo gli effetti.
- In simboli, considerando il singolo shift ...
 - quindi riferendosi ad un assegnato prodotto, oggetto dello shift (per il quale si è omesso l'indice):

$$ridC = Mant(i) \cdot QuantShift \cdot (\tau - t) + k \cdot a(i)$$

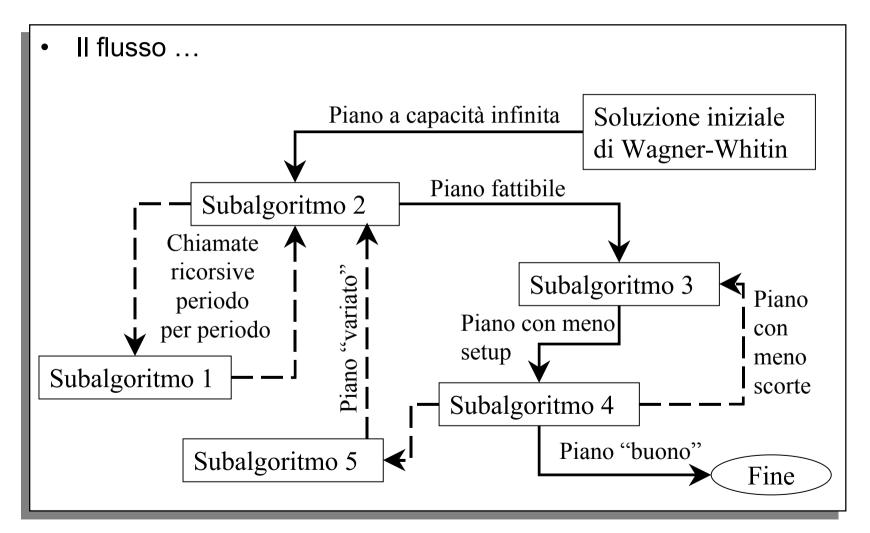


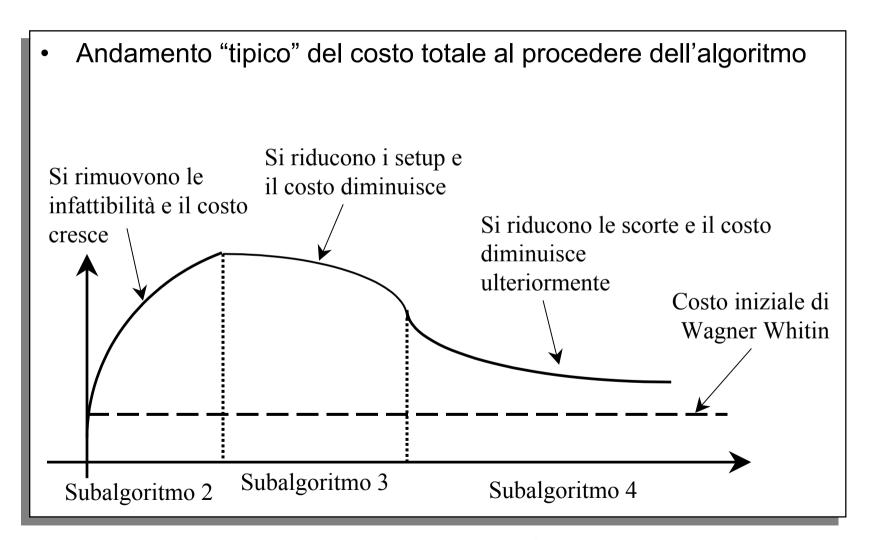
Osservazioni:

- ridC rappresenta la diminuzione del costo totale del piano dovuta allo shift ...
 - quindi per esempio, quando si sposta a sinistra (indietro nel tempo;
 cioè t > τ), il costo di mantenimento aumenta e dunque ridC è positivo
- il moltiplicatore k può assumere tre valori:
 - -1 quando si "crea" un setup, per esempio spostando parte di un lotto e nel periodo destinazione c'è un altro prodotto
 - 1 quando si "elimina" un setup, per esempio spostando un lotto intero e nel periodo destinazione c'è lo stesso prodotto
 - 0 in caso "neutro"

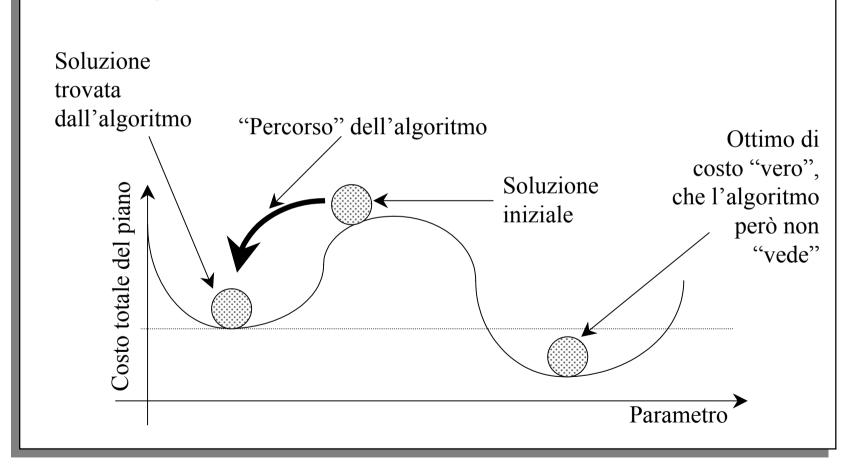


- Gli shift contenuti in 5 subalgoritmi:
 - subalgoritmo 1: elimina tutte le infattibilità tra il periodo 1 e un periodo τ qualsiasi (τ >1)
 - subalgoritmo 2: elimina tutte le infattibilità di una data soluzione (applicando ricorsivamente il subalgoritmo 1)
 - subalgoritmo 3: riduce i costi di setup con shift verso sinistra (accorpando i lotti)
 - subalgoritmo 4: riduce i costi di mantenimento con shift verso destra (pianificando "al più tardi")
 - dopo ogni shift richiama il subalgoritmo 3
 - subalgoritmo 5: perturba la soluzione





• Il subalgoritmo 5 serve a ridurre il rischio di porsi in minimi locali



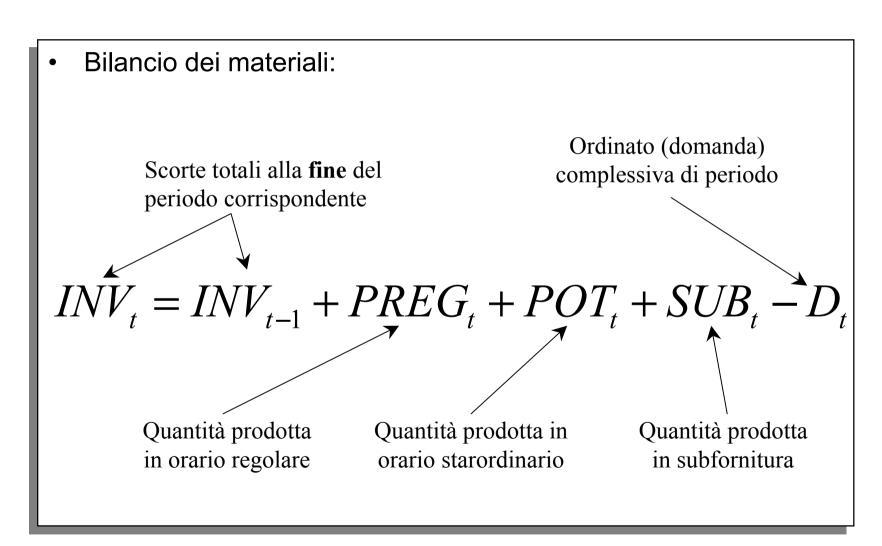
- Vantaggi e svantaggi del modello:
 - è assai più efficiente del modello di PL intera
 - la funzione obiettivo peggiora di circa l'1% a fronte di una riduzione del tempo di elaborazione di circa 140 volte
 - l'elaborazione è comunque piuttosto complessa
 - vi sono molti subalgoritmi che "ricircolano"
 - il tempo di leaborazione resta comunque piuttosto "lungo"
 - comunque non si tengono in considerazione i tempi di setup
 - una soluzione potrebbe risultare ulteriormente infattibile una volta introdotti il trade-off tra produzione e setup

- Vantaggi e svantaggi del modello:
 - le prestazioni sono molto influenzate dallo shift factor (SF),
 - ossia dal rapporto tra il costo di setup e il costo di mantenimento:

$$SF = \frac{SU}{Mant}$$

- Per shift factor bassi
 - il costo di mantenimento è prevalente su quello di setup
- la soluzione di partenza di Wagner Whitin è poco significativa
 - banalmente si colloca la produzione nel periodo in cui si manifesta la domanda
- Per shift factor alti, le prestazioni del modello risultano complessivamente "scarse"
 - una volta introdotti i setup (che non sono considerati nel modello) il vincolo di capacità potrebbe risultare comunque violato

- Ipotesi
 - Multiprodotto
 - Domanda di forma qualsiasi
 - Domanda nota deterministicamente
 - Ci sono limiti di capacità produttiva
 - Considerati straordinari e subfornitura
 - Setup da considerare come tempi
 - Non è ammesso backlog
 - Euristico



• Bilancio della manodopera:

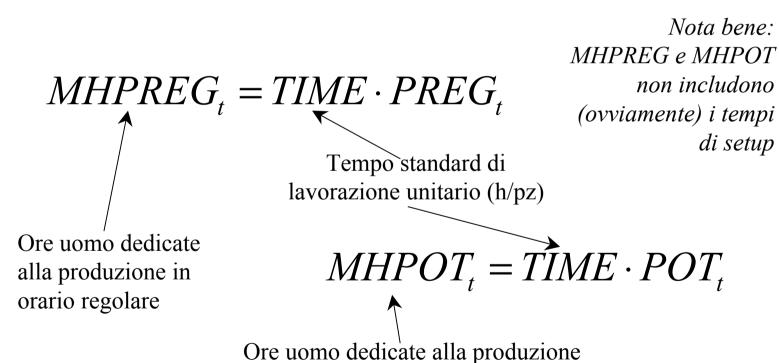
Addetti disponibili durante il periodo corrispondente

$$WORKERS_{t} = WORKERS_{t-1} + HIRE_{t} - FIRE_{t}$$

Numero di nuovi assunti all'inizio del periodo

Numero di addetti che lasciano il servizio

Legame produzione - tempo:



in orario straordinario

Ore totali disponibili **in orario regolare** per operatore

 $MHPREG_t + SUREG_t \leq HOURS_t \cdot WORKERS_t$

Ore uomo dedicate alla **produzione** in orario regolare

Ore uomo dedicate al **setup** in orario regolare

• Vincoli aggiuntivi sui setup:

Rapporto di straordinario della manodopera (al più 0,3)

Ore totali disponibili **in orario regolare** per operatore

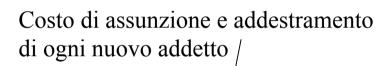
 $MHPOT_t + SUOT_t \leq f_t \cdot HOURS_t \cdot WORKERS_t$

Ore uomo dedicate alla produzione in orario **straordinario**

Ore uomo dedicate al setup in orario **straordinario**

- La funzione obiettivo
 - consiste nella minimizzazione dei costi totali attualizzati relativi a tutto l'orizzonte di pianificazione

$$\min(Z) = \sum_{t=1}^{T} \frac{COST_t}{(1+i)^t}$$



$$COST_{t} = C_{HIRE}^{\checkmark} \cdot HIRE_{t} + C_{FIRE}^{\checkmark} \cdot FIRE_{t} +$$

$$C_{SUB} \cdot SUB_t + WAGES_t + C_{MAT}(PREG_t + POT_t)$$

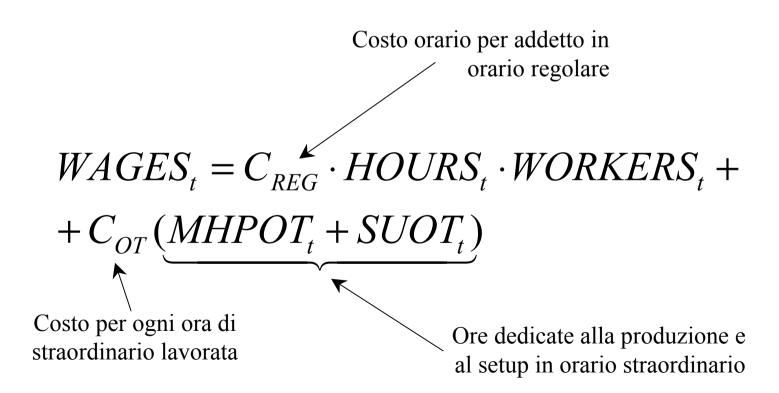
Costo unitario di subfornitura

Salario della manodopera impegnata Costo unitario **variabile** diretto (materiali, energia ecc.)

Costo di licenziamento

di ogni nuovo addetto

• Il costo della manodopera (WAGES):



- Osservazioni sul costo della manodopera:
 - la manodopera è considerata come un a risorsa molto rigida in orario regolare
 - in straordinario, il costo della manodopera è invece proporzionale alle ore effettivamente lavorate
 - i costi della manodopera nei due orari sono differenziati
 - si può considerare indirettamente la perdita di efficienza in straordinario ecc.

- Osservazioni generali sul modello:
 - il setup è considerato NON attraverso un costo esplicito, ma come sottrazione di capacità
 - i vincoli aggiuntivi impongono che le ore totali disponibili siano assegnate o alla produzione o al setup
 - il costo di mantenimento NON è una voce esplicita, ma è tradotto dal tasso barriera
 - in questo modo si considerano anche i costi accessori di mantenimento (obsolescenza ecc.)
- Fino a questo punto la struttura del modello è rigorosamente di PL ...

- Introduciamo ora la dimensione del lotto
 - standard Q(i), per ogni prodotto
 - "perturbata" Qt(i),

$$Q_t(i) = k_t \cdot Q(i)$$

Moltiplicatore del lotto

Il moltiplicatore del lotto

- è un "vettore" di variabili, una per ogni periodo dell'orizzonte di pianificazione
- deve essere determinato accanto alle tre variabili per periodo (PREG, POT e SUB)
- riflette la politica di lot sizing dell'azienda

 Equazione di bilanciamento addizionale di lot sizing: si impone che la giacenza media (MINV) effettivamente sia superiore alla somma delle scorte di sicurezza e della metà del lotto

$$MINV_{t} \ge \sum_{i} \left(SS_{i} + \frac{1}{2}Q_{t}(i)\right)$$

$$MINV_{t} = \frac{1}{2} \left(INV_{t} + INV_{t-1} \right)$$

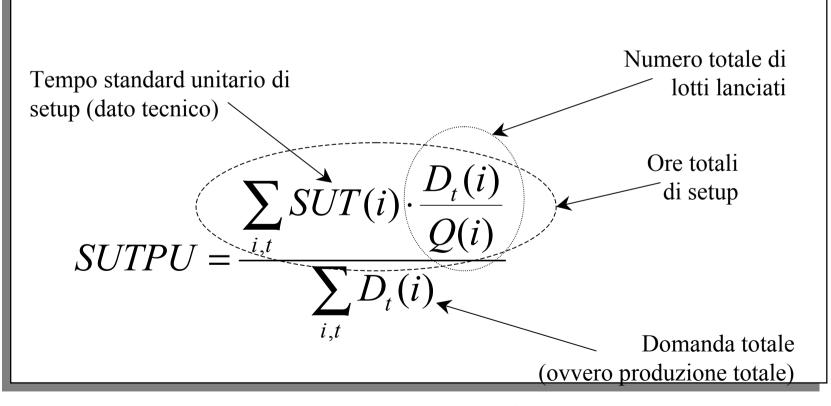
• Vincoli ulteriori sulle ore di setup:

$$SUREG_{t} = \frac{SUTPU \cdot PREG_{t}}{k_{t}}$$
Tempo medio di setup per unità di prodotto (è un **termine noto** calcolato sul lotto standard)
orario **regolare**

Ore uomo totali dedicate ai setup in orario **straordinario**

$$SUOT_{t} = \frac{SUTPU \cdot POT_{t}}{k_{t}}$$

• Il termine SUTPU (set-up per unit) si può stimare come:



- Estensioni del modello:
 - si può considerare la possibilità di effettuare consegne differite nel tempo (backlog, bakorder):
 - · il bilancio dei materiali diventa:

$$INV_{t} - BO_{t} = INV_{t-1} + PREG_{t} + POT_{t} + SUB_{t} - D_{t} - BO_{t-1}$$

parallelamente si modifica anche la funzione di costo:

$$COST_{t} = C_{HIRE} \cdot HIRE_{t} + ... + C_{MAT}(PREG_{t} + POT_{t}) + C_{Bo} \cdot BO_{t}$$

- Estensioni del modello:
 - si può introdurre una limitazione alla giacenza
 - per esempio per considerare la limitata potenzialità ricettiva dei magazzini

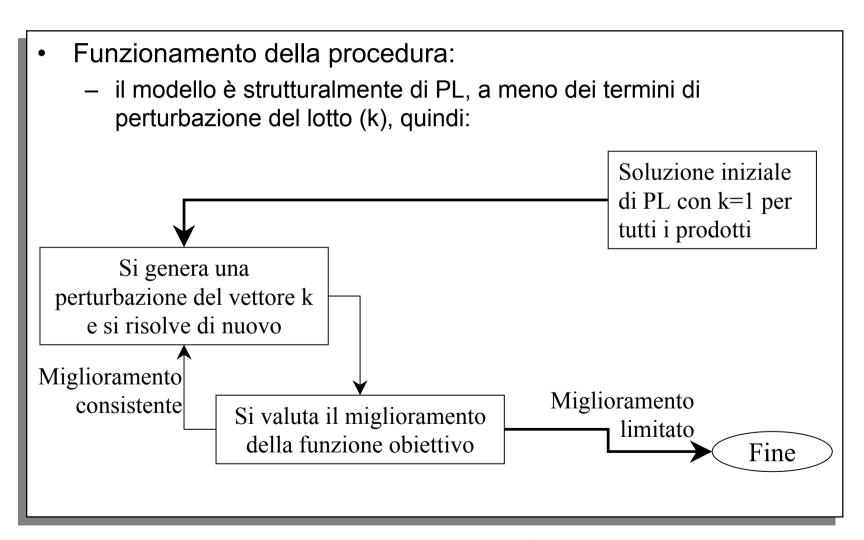
$$INV_{t} \leq MAXINV$$

 si può introdurre una subfornitura differenziata per tener conto che alcuni terzisti hanno costi inferiori a altri, ma limiti di capacità

$$C_{SUB-1} < C_{SUB-2}$$

$$SUB-1_{t} \leq MAXSUB$$

$$C_{SUB-1} \cdot SUB_1 + C_{SUB-2} \cdot SUB_2$$



- Considerazioni conclusive
 - la particolarità del modello risiede nella gestione del setup
 - come riduzione della capacità in termini quantitativi
 - come costo di mancata produzione implicito in termini di funzione obiettivo
 - tuttavia:
 - i costi "vivi" di setup non sono rappresentati
 - il tempo di setup è comunque indipendente dalla sequenza
 - il costo di mantenimento a scorta è solo costo opportunità