Operational Research II

MidTerm

1. A firm is selecting a new energy generator. It can buy the generator now (generator A) sustaining a cost of 500 and receiving a sving benefit of 120 per year over the next five years, for sure. Or it can decide to wait for the new type of energy generator (generator B). Generator B is a clean one, whose cost is -700 . However, there is the possibility of a government incentive of 30% of the cost. The probability that the government will introduce the incentive in one year (PI) is $P I=0.5$. The new type of generator, however will have an incertain performance. It can perform well, guaranteeing a recovery of 180 per year over the next five years, or it can show a poor performance, guaranteeing savings of up to 120 per year. The probability of good performance is $P G \sim u(0,1)$. Knowing that the discunt rate of the firm is 5%,
a. Draw the influence diagram for this decision
b. Draw the corresponding decision tree
c. What is the preferred alternative?
d. What is the value of PG for which you are indifferent among the two alternatives?
e. Compute the expected value of perfect information on the government incentive
f. Suppose that you gather further evidence on the performance of new generators looking at 11 new products. In 6 out eleven cases the performance is good. What do you
decide now? (Hint: $\frac{\int_{0}^{1} p^{7}(1-p)^{5} d p}{\int_{0}^{1} s^{6}(1-s)^{s} d s}=\frac{7}{13}=.54$)
a.

b.

c. See above
d. 0.41

e.

EVPI

42.68926663
f. From d, still B.
2. A random variable is characterized by the following:

$$
f(x)=\left\{\begin{array}{cc}
k \cos x \quad \text { if } \quad-\frac{\pi}{2}<x<\frac{\pi}{2} \\
0 \quad \text { otherwise }
\end{array}\right.
$$

Using a perfect random number generators that produces uniform numbers bewteen 0 and 1 , you want to generate random variables distributed according to $f(x)$.
a. What is the value of k that makes $f(x)$ a density function
b. What is the inversion equation?
c. Suppose the first random number generated is 0.5 . What are the corresponding values of $F(x)$ and x ?
a.

$$
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(x) d x=2 k
$$

Hence:

$$
k=\frac{1}{2}
$$

b.

$$
\int_{-\frac{\pi}{2}}^{x} k \cos s d s=\frac{1}{2} \sin x+\frac{1}{2}
$$

Hence:

$$
u=\frac{1}{2} \sin x+\frac{1}{2}
$$

Solution is :

$$
x=\arcsin (2 u-1)
$$

c.

$$
\begin{gathered}
F(x)=0.5 \\
u=0.5
\end{gathered}
$$

implies

$$
x=0
$$

3. You have to decide bewteen two investments, A and B . A gives for sure $x_{1}=20$. B gives $x_{2}=50$, if the market goes up, with probability $P=.5$ and of $x_{3}=-30$ with probability $1-P=0.5$. You have the following utility function:

$$
u(x)=1-e^{-\alpha x}
$$

A source of information says that the market goes up when eventually the market goes up with probability $0.9(P \sup \mid u p=0.9)$. And it also tells you that it goes down when eventually the market goes down, with probability 0.95 (Psdown \mid down $=0.95$). Set $\alpha=1 / 40$.
What is the expected utiliy of sample information for this source?
a. \qquad
EUSI

	up	down
says	0.90	0.05
sup		0.10
sdown		0.95
		0.5
pup	0.5	
pdown		
		0.48
psup	0.53	0.48
psdown		0.53
		0.94737
sup sdown		
up		0.05263

pup_sup

pdown_sup
psup_up*pup/psup
pup_sdown psup_down*pdown/psup pdown_sdown
psdown_up*pup/psdown
psdown_down*pdown/psdown

