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converges to �. Moreover, as the o�set l ! 1, the samples Xk and Xk+lapproach independence. This is similar to the situation in classical numeri-cal analysis. Direct methods for solving equations, such as Gauss elimination,produce (in \exact arithmetic") the exact answer in a speci�c amount of com-puter time. Nevertheless, for very large systems of equations that arise fromdiscretizing partial di�erential equations, iterative methods, such as GaussSeidel or multigrid, are preferred.Direct sampling methods that are entirely deterministic (given the as-sumed uniform random variables) are called \mapping methods". One of themost famous mapping methods is the Box Muller method for generating stan-dard normals. Rejection methods are the other main family of direct samplingmethods. They are interesting and useful, and they are precursors to one ofthe main dynamic sampling methods, the Metropolis method.2 Direct Sampling by MappingMapping methods are methods that make a random variable by applyingdeterministic operations (i.e. mappings) to other random variables. They arethe closest Monte Carlo relatives to direct methods in numerical analysis;they produce an exact answer (exactly independent random variables exactlydistributed by �) in a deterministic amount of time.The term \mapping method" is often used to refer to the special caseof a one dimensional random variable, X, given as a function of a singleuniform random variable, �. Suppose that the function x = �(t) is de�nedand monotone for t in the range 0 < t < 1 and that X = �(�). We need todetermine the probability density function, �(x), for X. This can be doneusing the applied mathematicians' de�nition of � (indeed, the de�nition usedby the entire world outside of pure mathematics):�(x)dx = Prob [X 2 (x; x+ dx)] : (1)To use this, we suppose that a number, x is in the range of � (otherwise,�(x) = 0). Since � is monotone1, there is a unique t with x = �(t). Moreover,� maps an interval of length dt around t to an interval of length dx aroundx, where dx = �0(t)dt. The probability that X lands in the interval of length1This is the only place where the monotonicity assumption is used2



dx around x is the same as the probability that � is in the interval of size dtaround t. This leads to the formula�(x) = 1=�0(t) ; where x = �(t) : (2)This one dimensional mapping method can be explained in terms of thedistribution functionF (x) = Prob [X < x] = Z x�1 �(x0)dx0 :This function is monotone increasing (or, at any rate, nondecreasing) andmaps the real line to the interval [0; 1]. If x = �(t) is the inverse of thismapping, then X = �(�) gives X � �. Indeed, if F (x) = t, which is thesame as �(t) = x, then Prob[X < x] = Prob[� < t] = t = F (x), as claimed.Thus, if we can compute the inde�nite integral F (x) and solve the equationF (x) = t to �nd x for given t 2 [0; 1], then we can sample from �. This isthe case for the exponential random variable (see below).If we don't have closed form expressions for F or �, we can tabulatethem. The work that it takes to make the table by numerical integration willbe dwarfed by the time taken to generate thousands or millions of samples.Tabulation may not be practical when � depends on several parameters whosevalues are not known in advance or change from sample to sample.2.1 The Exponential Random VariableAn exponential random variable with mean � is a random variable with den-sity �(x) = 1�e�x=� ; if x > 0, and �(x) = 0 otherwise. (3)If X is an exponential with mean 1 then Y = �X is exponential with mean� (check this), so we need only generate an exponential with mean 1. Expo-nential random variables are important partly because they are a good wayto simulate a continuous time Markov process with discrete state space.It is natural to think of an exponential random variable as the randomamount of time one waits for something to happen. The de�ning propertyof the exponential waiting time is that it has no knowledge of the past (Thisis the Markov property.). If you have waited a time, t and the event has3



not happened (T > t), then it is as though you had not waited at all. If alight bulb failure has an exponential distribution, than any bulb that has notfailed is good as new. Such models are used commercially, for example topredict the MTBF (mean time before failure) of hard disks. The manufacturerruns a number of drives and records the failures in a few months. Theseobservations are used to �t an exponential probability density and determinean empirical parameter, �, which then appears in the advertisements. If acompany actually tested its drives until half of them failed (on the order of 4years) before advertising them, it would miss the market completely.The formula (2) is a consequence of the Markov property. Suppose �(t)is the density function for a random variable, T , with the Markov property.The probability of breaking immediatelywithin time dt is �(0)dt. The Markovproperty states that this is also the probability of breaking in time interval(t; t+dt), given that it has lasted until time t. From the formula for conditionalprobability, this leads to�(0)dt = Prob [T 2 (t; t+ dt) j T > t]= Prob [T 2 (t; t+ dt) and T > t]Prob [T > t]= �(t)dt1� F (t) ;where F (t) = R t�1 �(t0)dt0 is the distribution function for �. But, �(t) =�F 0(t) and F (0) = 0, so we have the di�erential equation and boundarycondition for F �(0) (1 � F (t)) = �F 0(t) ; F (0) = 0 ;which leads to F (t) = 1 � e�t=� and then to (2).The direct sampling method for the exponential random variable is easierto explain than the exponential random variable itself. If X = � log(�) and� is uniform, then (1) shows that X is exponential. Direct application ofthe probability distribution formalism discussed above leads to the formulaX = � log(1��), which also works, since 1�� is also a uniformly distributedrandom variable. 4



2.2 The Box Muller Algorithm for NormalsA Gaussian random variable (also called \normal") with mean � and variance�2 is a random variable with density function1p2��2e�(x��)2=2�2 :The \standard normal" random variable is a Gaussian with mean 0 and vari-ance 1.The Box Muller method, which is a clever mapping method, makes twoindependent standard normal random variables from two independent uni-forms. The trick is that X and Y are independent standard normals if andonly if their joint density function is�(x; y) = 12�e�(x2+y2)=2 : (4)If we write (X;Y ) in polar coordinates, X = R cos(�), Y = R sin(�) then(X;Y ) will have the density (3) if R and � have the joint density~�(r; �) = 12�re�r2=2 ;where, of course, � is restricted to a range such as 0 < � < 2�. This can besampled by taking � to be uniformly distributed in the interval [0; 2�] (i.e.� = 2��1), and R by the mapping formula R = q�2 log(�2).The Box Muller algorithm makes independent standard normals in pairs.The �rst two uniforms, �1, and �2, make the �rst two standard normals, X1,and X2. Then �3 and �4 make X3 and X4, and so on. Many large MonteCarlo codes avoid repeated function calls to random number generators bygenerating large lists of random numbers (say, 10; 000) each call. The BoxMuller can easily be used to �ll list of standard normal random variables.2.3 Green's Function for the Klein Gordon OperatorThe Klein Gordon operator is �4+m2 :5



Klein and Gordon used it (actually, it's square root) in an attempt to makea relativistic version of Schr�odinger's wave equation in quantum mechanics.It has many applications, including Monte Carlo. The Green's function forthe Klein Gordon operator, G(x), is de�ned to be the solution of�4G +m2G = �(x) : (5)The solution in 3 dimensions isG(x) = 1jxje�mjxj. The solution in 2 dimensionsis a \modi�ed Bessel function": G(x) = K0(m jxj). By integrating both sidesof (4), and assuming that G decays rapidly for large jxj, we �nd thatZ G(x)dx = 1m2 :The probability density function we want to sample is �(x) = 1m2G(x). Wewill shortly see that G(x) > 0 for all X. We may at �rst be discouraged sincewe don't even have a formula for �.The trick for sampling �, and for many related density functions, is to �nda suitable integral representation. Integral representations for special func-tions in mathematical physics can usually be found from physical propertiesof the de�nition of the function. In this case, consider a generalization of (4)to more general right hand sides and operators:Au = f : (6)Here A represents the Klein Gordon operator, u the Green's function, and fthe delta function. If A is positive de�nite (as it is in the Klein Gordon case),we solve (5) using the dynamical system_v = �Av ; v(0) = f : (7)If v(t)! 0 quickly enough as t!1, thenu = Z 1t=0 v(t)dt (8)satis�es (5). In the case of the Klein Gordon operator, (6) becomes@tv = 4v �m2v ; v(x; 0) = �(x) : (9)6



If the m2 term were not present, the solution would be given by the funda-mental solution of the heat equation in d dimensions, namely1(4�t)d=2 e�jxj2=4t :The \decay term", �m2v, is handled by including an additional exponentialdecay factor. Therefore, the solution to (8) isv(x; t) = 1(4�t)d=2e�jxj2=4te�m2t :Finally, we can take the integral (7) to get the desired integral representationfor G, and therefore (after adding a factor 1=m2) �:�(x) = Z 1t=0 dtm2e�m2t � 1(4�t)d=2e�jxj2=4t : (10)The integral representation (9) suggests a strategy for sampling �. Noticethat the �rst factor on the right is an exponential density with mean 1=m2while the second is a gaussian density in d dimensions with each componenthaving variance 2t. The direct sampling algorithm is now: �rst, pick a ran-dom time, T , from the exponential density function with mean 1=m2 usingthe log mapping above; second, pick X = (X1; : : : ;Xd) by taking Yk to beindependent standard normal random variables made using the Box Mulleralgorithm, and Xk = p2TYk.In this sampling algorithm, the random variable, T is not reported to theuser, but it makes the method work. We have turned a seemingly hard ddimensional sampling problem into a much easier d+1 dimensional samplingproblem. Some of the most e�ective innovative Monte Carlo methods devel-oped in recent years, among them umbrella sampling and cluster algorithms,are based on clever enlargements of the sampling space.3 Sampling by RejectionRejection methods sit between the above truly direct methods and dynamicsampling methods discussed below. They produce exactly independent sam-ples with the exact probability density speci�ed, but the number of steps7



needed to do this cannot be exactly predicted in advance. There is consid-erable freedom in designing a rejection algorithm to sample a given density,�. The Monte Carlo practitioner occasionally must spend some time and(not that pleasant) e�ort optimizing parameters or otherwise tinkering to geta rejection method that is reasonably e�cient. Rejection methods are oftenin the innermost loop of a Monte Carlo code, so their e�ciency determinesthe running time of the code as a whole.To generate a random variable with density �(x), the rejection methoduses independent random variables sampled from an auxiliary density, �0(x)and a \acceptance probability", p(x). The method has two stepsTrial: generate a \trial" random variable, X � �0. All trials are independent.Rejection: \accept" the trial with probability p(X). If X is accepted, it isthe random variable generated by the algorithm. If X is rejected, goback to the trial step, generate a new (independent) X.Accepting with probability p is done on the computer by comparing p toanother (independent) uniform random variable. If p is larger (an event withprobability p), accept. This trial and rejection process is repeated until arandom variable is accepted. If � is the probability of getting an acceptance onany given trial, then the expected number of trials needed to get an acceptanceis 1=�.The following ghastly one line code C does all this:while( unif() > acc prob( X = trial()) );This assumes that float unif()when called, returns a uniformly distributedrandom number, that float acc prob( float x) returns the acceptanceprobability for trial variable x, and that float trial() returns a samplefrom the trial density, �0. A code that works from lists could look like this:while( unif[u count++] > acc prob( X = trial[t count++])) fif ( u count >= U LIST SIZE ) unif refil();if ( t count >= T LIST SIZE ) trial refil();g 8



In the second code fragment, float unif[U LIST SIZE] and float trial[U LIST SIZE]are arrays rather than subroutines. the procedures void unif refil() andvoid unif refil() re�ll the lists, using random number generators.We can determine the probability density function for the eventual ac-cepted X using the laws of conditional probability. It is given by�(x)dx = Prob [ accepted X 2 (x; x+ dx)]= Prob [ trial X 2 (x; x+ dx) j accepted X ]= Prob [ trial X 2 (x; x+ dx) and accepted X ]Prob [ got an acceptance ]= 1� �0(x)dx � p(x) ;where � is the probability of getting an acceptance on a given trial, as above.Putting this together gives p(x) = � �(x)�0(x) : (11)In order for p(x) as given in (10) to be a probability, it must be between 0and 1. In order for this to be possible (with a �xed �), we must have�(x) � 1� �0(x) :This requirement limits the possibilities for �0. For example, one can samplea standard normal by rejection from an exponential (the ratio e�x2=2=e�x isbounded), but one cannot sample an exponential by rejection from a gaussian(the ratio e�x=e�x2=2 is not).The rejection algorithm has the advantage that it can be applied even whenthe probability densities are known only up to a multiplicative constant. Thissituation arises, for instance, whenever the Gibbs Boltzmann distribution (the\canonical ensemble") is used. In that notation, suppose �(x) and �0(x) aretwo energy functions with corresponding probability densities�(x) = 1Z e��(x) ; and �0(x) = 1Z0 e��0(x) :If we write the acceptance probability also in exponential form:p(x) = e� (x) ;9



then the discussion leading to (10) now gives the formula (x) = �(x)� �0(x) + � ;where � = log(Z)� log(Z0)� log(�) (12)should be taken as small as possible, subject to the constraint that  (x) � 0for all x (so the p(x) is a probability). If we work with the functions, �, �0,and  , then only � need ever be known, not Z, Z0, or �.Example: Let us consider the problem of generating a standard normalby rejection from an exponential. To begin with, we will sample from theexponential density with mean one and do rejection to get a random variablewhose density function is the positive half of the gaussian, that is�(x) = ( 2p2�e�x2=2 if x > 0,0 otherwise ; and �0(x) = ( e�x if x > 0,0 otherwise :From the treatment where the constants are supposed to be known we getacceptance probability p(x) = �p2p�ex�x2=2 :The largest possible � that gives p(x) � 1 for all x > 0 is� = p�p2 e�1=2 = :7602 ;which is also the e�ciency of the rejection method: the probability of gettingan acceptance on a given trial is 76%.Example. We want to sample from the density�(x) = 1Z ex4=4by rejection from a gaussian. At �rst we consider rejection from a standardnormal. In that case,  (x) = x44 � x22 + � : (13)To make sure  � 0, we compute that the minimum of  is taken at x = �1( 0 = 0) x3 = x). Thus, if � = �1=4, then minx (x) = 0, as needed.10



We try to improve the e�cience of this rejection method by rejecting froma normal with variance �2 6= 1. This makes �0(x) = x2=x�2, so (12) becomes (x) = x44 � x22�2 + � ;which now is minimized at x = �1=�, so � = �1=4�4. To optimize theacceptance probability, �, by the best choice of �. we use Z0 = p2��2, so ,from (11), log(�) = log(Z) + 14�4 � log(�) + 12 log(2�) :To maximize this expression, we di�erentiate with respect to � and set thederivative to zero. Since Z and 2� are independent of �, this gives �opt = 1:our standard normal rejection was already optimal.
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