Monte Carlo Lecture Notes 11,

Jonathan Goodman *
Courant Institute of Mathematical Sciences, NYU

January 29, 1997

1 Introduction to Direct Sampling

We think of the computer “random number generator” as an oracle, producing
independent random variables, &1, &, ..., each uniformly distributed in the
interval [0, 1]. Direct sampling methods are methods that use these & to pro-
duce independent random variables with other probability distributions. The
notation X ~ p(x) will mean that the random variable X has a probability
density function p(x). This means that

Prob [X € A] = Ap(:z;)d:z;

for any (measurable) set, A. With this notation, X can be a one dimensional
or a multidimensional random variable. If X is a random variable, we say
that X “is a sample of X” if X} has the same density X has. Direct sampling
means producing independent samples of a given random variable.

In many cases, the most efficient sampling methods are not direct, but
“dynamic”, or iterative. Dynamic methods, such as the Metropolis algorithm,
produce a sequence of samples that are not independent of each other and
do not exactly have the p density. However, as k — oo, the density for X}

*goodman@cims.nyu.edu, or http://www.math.nyu.edu/faculty /goodman, T retain the
copyright to these notes. I do not give anyone permission to copy the computer files related
to them (the .tex files, .dvi files, .ps files, etc.) beyond downloading a personal copy from
the class web site. If you want more copies, contact me.

converges to p. Moreover, as the offset [— oo, the samples X and Xy
approach independence. This is similar to the situation in classical numeri-
cal analysis. Direct methods for solving equations, such as Gauss elimination,
produce (in “exact arithmetic”) the exact answer in a specific amount of com-
puter time. Nevertheless, for very large systems of equations that arise from
discretizing partial differential equations, iterative methods, such as Gauss
Seidel or multigrid, are preferred.

Direct sampling methods that are entirely deterministic (given the as-
sumed uniform random variables) are called “mapping methods”. One of the
most famous mapping methods is the Box Muller method for generating stan-
dard normals. Rejection methods are the other main family of direct sampling
methods. They are interesting and useful, and they are precursors to one of
the main dynamic sampling methods, the Metropolis method.

2 Direct Sampling by Mapping

Mapping methods are methods that make a random variable by applying
deterministic operations (i.e. mappings) to other random variables. They are
the closest Monte Carlo relatives to direct methods in numerical analysis;
they produce an exact answer (exactly independent random variables exactly
distributed by p) in a deterministic amount of time.

The term “mapping method” is often used to refer to the special case
of a one dimensional random variable, X, given as a function of a single
uniform random variable, £. Suppose that the function @ = ¢() is defined
and monotone for ¢ in the range 0 < t < 1 and that X = ¢(£). We need to
determine the probability density function, p(x), for X. This can be done
using the applied mathematicians’ definition of p (indeed, the definition used
by the entire world outside of pure mathematics):

p(z)dr = Prob [X € (z,z 4 dx)] . (1)

To use this, we suppose that a number, x is in the range of ¢ (otherwise,
p(z) = 0). Since ¢ is monotone', there is a unique ¢ with = ¢(t). Moreover,
¢ maps an interval of length dt around ¢ to an interval of length dz around
x, where dx = ¢/(t)dt. The probability that X lands in the interval of length

!This is the only place where the monotonicity assumption is used

dx around x is the same as the probability that ¢ is in the interval of size dt
around ¢. This leads to the formula

ple) = 1/d(1) . where @ =g(1) . (2)

This one dimensional mapping method can be explained in terms of the
distribution function

F(x)=Prob[X < x| = / p(z")dz" .
This function is monotone increasing (or, at any rate, nondecreasing) and
maps the real line to the interval [0,1]. If @ = ¢(¢) is the inverse of this
mapping, then X = ¢(&) gives X ~ p. Indeed, if F(x) = ¢, which is the
same as ¢(t) = x, then Prob[X < x] = Prob[¢{ < t] =t = F(x), as claimed.
Thus, if we can compute the indefinite integral F'(z) and solve the equation
F(x) =t to find « for given t € [0, 1], then we can sample from p. This is
the case for the exponential random variable (see below).

If we don’t have closed form expressions for F' or ¢, we can tabulate
them. The work that it takes to make the table by numerical integration will
be dwarfed by the time taken to generate thousands or millions of samples.
Tabulation may not be practical when p depends on several parameters whose
values are not known in advance or change from sample to sample.

2.1 The Exponential Random Variable

An exponential random variable with mean p is a random variable with den-
sity

pla) = ie‘x/“ , if & >0, and p(z) = 0 otherwise. (3)
If X is an exponential with mean 1 then Y = p X is exponential with mean
o (check this), so we need only generate an exponential with mean 1. Expo-
nential random variables are important partly because they are a good way
to simulate a continuous time Markov process with discrete state space.

It is natural to think of an exponential random variable as the random
amount of time one waits for something to happen. The defining property
of the exponential waiting time is that it has no knowledge of the past (This
is the Markov property.). If you have waited a time, ¢ and the event has

not happened (T > t), then it is as though you had not waited at all. If a
light bulb failure has an exponential distribution, than any bulb that has not
failed is good as new. Such models are used commercially, for example to
predict the MTBEF (mean time before failure) of hard disks. The manufacturer
runs a number of drives and records the failures in a few months. These
observations are used to fit an exponential probability density and determine
an empirical parameter, p, which then appears in the advertisements. If a
company actually tested its drives until half of them failed (on the order of 4
years) before advertising them, it would miss the market completely.

The formula (2) is a consequence of the Markov property. Suppose p(t)
is the density function for a random variable, T', with the Markov property.
The probability of breaking immediately within time dt is p(0)dt. The Markov
property states that this is also the probability of breaking in time interval
(t,t+dt), given that it has lasted until time¢. From the formula for conditional
probability, this leads to

p(0)dt = Prob[T € (t,t+dt)|T >t]
Prob [T € (t,t +dt) and T > {]
Prob [T >]

p(t)dt
1—F(t)’

where F(t) = ['_ p(t)dt' is the distribution function for p. But, p(t) =
—F'(t) and F(0) = 0, so we have the differential equation and boundary
condition for F

p(0) (L= F(1)) = —F'(1) , F(0)=0 .

which leads to F'(1) = 1 — e~"/# and then to (2).

The direct sampling method for the exponential random variable is easier
to explain than the exponential random variable itself. If X = —log(¢{) and
¢ is uniform, then (1) shows that X is exponential. Direct application of
the probability distribution formalism discussed above leads to the formula
X = —log(1—=¢), which also works, since 1 —£ is also a uniformly distributed
random variable.

2.2 The Box Muller Algorithm for Normals

A Gaussian random variable (also called “normal”) with mean g and variance

o? is a random variable with density function

L —@-wpze?

e
vV 2mo?

The “standard normal” random variable is a Gaussian with mean 0 and vari-
ance 1.

The Box Muller method, which is a clever mapping method, makes two
independent standard normal random variables from two independent uni-
forms. The trick is that X and Y are independent standard normals if and
only if their joint density function is

1 2 2
— — @)z 4
plz,y) = 5—e (4)
If we write (X,Y) in polar coordinates, X = Rcos(0), Y = Rsin(0) then
(X,Y") will have the density (3) if R and © have the joint density
1 >
,5(7“,(9) = %re—r /2)
where, of course, § is restricted to a range such as 0 < 8 < 27. This can be
sampled by taking © to be uniformly distributed in the interval [0, 27] (i.e.
O = 27&;), and R by the mapping formula R = /—2log(&;).

The Box Muller algorithm makes independent standard normals in pairs.
The first two uniforms, &, and &, make the first two standard normals, X7,
and X,. Then & and & make X3 and X4, and so on. Many large Monte
Carlo codes avoid repeated function calls to random number generators by
generating large lists of random numbers (say, 10,000) each call. The Box
Muller can easily be used to fill list of standard normal random variables.

2.3 Green’s Function for the Klein Gordon Operator

The Klein Gordon operator is

— A +m? .

Klein and Gordon used it (actually, it’s square root) in an attempt to make
a relativistic version of Schrodinger’s wave equation in quantum mechanics.
It has many applications, including Monte Carlo. The Green’s function for
the Klein Gordon operator, G(x), is defined to be the solution of

— AG+m*G=6(z) . (5)

—m|z

The solution in 3 dimensions is G(x) = |;—|e |, The solution in 2 dimensions
is a “modified Bessel function”: G(x) = Ko(m |z|). By integrating both sides

of (4), and assuming that & decays rapidly for large |z|, we find that

/G(:z;)d:z; = % .

The probability density function we want to sample is p(z) = 25G(z). We
will shortly see that G/(x) > 0 for all X. We may at first be discouraged since
we don’t even have a formula for p.

The trick for sampling p, and for many related density functions, is to find
a suitable integral representation. Integral representations for special func-
tions in mathematical physics can usually be found from physical properties
of the definition of the function. In this case, consider a generalization of (4)
to more general right hand sides and operators:

Au=f . (6)

Here A represents the Klein Gordon operator, u the Green’s function, and f
the delta function. If A is positive definite (as it is in the Klein Gordon case),
we solve (5) using the dynamical system

;w0 =17 (7)

If v(t) — 0 quickly enough as t — oo, then

U= v(t)dt (8)

t=0

satisfies (5). In the case of the Klein Gordon operator, (6) becomes

Ow = Av—m?v |, v(z,0)=48z) . (9)

If the m? term were not present, the solution would be given by the funda-
mental solution of the heat equation in d dimensions, namely

L e
(4mt)*?

The “decay term”, —m?v, is handled by including an additional exponential

decay factor. Therefore, the solution to (8) is

1
(4mt) "/

€—|1’|2/4t€—m2t

v(x,t) =

Finally, we can take the integral (7) to get the desired integral representation
for G, and therefore (after adding a factor 1/m?) p:

ot 24 1 2
— o -m - —|l’| /47,‘] 10
ple) /7,‘:0 m2€ (47Tt)d/2€ (10)

The integral representation (9) suggests a strategy for sampling p. Notice
that the first factor on the right is an exponential density with mean 1/m?
while the second is a gaussian density in d dimensions with each component
having variance 2¢. The direct sampling algorithm is now: first, pick a ran-
dom time, T, from the exponential density function with mean 1/m? using
the log mapping above; second, pick X = (Xy,..., X,) by taking Y, to be
independent standard normal random variables made using the Box Muller
algorithm, and X = V2TY,.

In this sampling algorithm, the random variable, T" is not reported to the
user, but it makes the method work. We have turned a seemingly hard d
dimensional sampling problem into a much easier d+ 1 dimensional sampling
problem. Some of the most effective innovative Monte Carlo methods devel-
oped in recent years, among them umbrella sampling and cluster algorithms,
are based on clever enlargements of the sampling space.

3 Sampling by Rejection

Rejection methods sit between the above truly direct methods and dynamic
sampling methods discussed below. They produce exactly independent sam-
ples with the exact probability density specified, but the number of steps

needed to do this cannot be exactly predicted in advance. There is consid-
erable freedom in designing a rejection algorithm to sample a given density,
p.

The Monte Carlo practitioner occasionally must spend some time and
(not that pleasant) effort optimizing parameters or otherwise tinkering to get
a rejection method that is reasonably efficient. Rejection methods are often
in the innermost loop of a Monte Carlo code, so their efficiency determines
the running time of the code as a whole.

To generate a random variable with density p(x), the rejection method
uses independent random variables sampled from an auxiliary density, po(x)
and a “acceptance probability”, p(x). The method has two steps

Trial: generate a “trial” random variable, X ~ po. All trials are independent.

Rejection: “accept” the trial with probability p(X). If X is accepted, it is
the random variable generated by the algorithm. If X is rejected, go
back to the trial step, generate a new (independent) X.

Accepting with probability p is done on the computer by comparing p to
another (independent) uniform random variable. If p is larger (an event with
probability p), accept. This trial and rejection process is repeated until a
random variable is accepted. If (is the probability of getting an acceptance on
any given trial, then the expected number of trials needed to get an acceptance
is 1/¢.

The following ghastly one line code C does all this:

while(unif() > acc_prob(X = trial()));

This assumes that float unif () when called, returns a uniformly distributed
random number, that float acc_prob(float x) returns the acceptance
probability for trial variable x, and that float trial() returns a sample
from the trial density, po. A code that works from lists could look like this:

while(unif[u count++] > acc prob(X = triall[t_count++])
) |
if (u_count »= ULISTSIZE) unif refil();
if (t_count »= TLISTSIZE) trial refil();

}

In the second code fragment, float unif [ULIST SIZE] and float trial [ULIST SIZE]
are arrays rather than subroutines. the procedures void unif refil() and
void unif refil () refill the lists, using random number generators.
We can determine the probability density function for the eventual ac-
cepted X using the laws of conditional probability. It is given by

p(x)de = Prob[accepted X € (x, 2 + dz)]
= Prob[trial X € (2,2 + dz) | accepted X]
Prob [trial X € (z,2 4 dx) and accepted X]

Prob [got an acceptance |

- §p0<x>dx-p<x> ,

where (is the probability of getting an acceptance on a given trial, as above.
Putting this together gives

pe)
plx) = (¢ . 11
(<) po() (1)
In order for p(x) as given in (10) to be a probability, it must be between 0
and 1. In order for this to be possible (with a fixed (), we must have

pla) < Trnfe) -

This requirement limits the possibilities for pg. For example, one can sample
a standard normal by rejection from an exponential (the ratio 6_902/2/6_90 is
bounded), but one cannot sample an exponential by rejection from a gaussian
(the ratio e~ /e=**/2 is not).

The rejection algorithm has the advantage that it can be applied even when
the probability densities are known only up to a multiplicative constant. This
situation arises, for instance, whenever the Gibbs Boltzmann distribution (the
“canonical ensemble”) is used. In that notation, suppose ¢(x) and ¢o(x) are
two energy functions with corresponding probability densities

1 1
p(z) = Ze_(b(x) , and po(z) = Z—Oe_%(“’) .
If we write the acceptance probability also in exponential form:

then the discussion leading to (10) now gives the formula

Y(x) = dlz) = golz) + o,

where

a = log(Z) — log(Zo) — log(() (12)
should be taken as small as possible, subject to the constraint that ¢(x) > 0
for all @ (so the p(x) is a probability). If we work with the functions, ¢, ¢,
and v, then only « need ever be known, not 7, Zg, or (.
Example: Let us consider the problem of generating a standard normal
by rejection from an exponential. To begin with, we will sample from the
exponential density with mean one and do rejection to get a random variable
whose density function is the positive half of the gaussian, that is

, and po(x) = { 8_ if > 07

0 otherwise otherwise

plx) = { AT i e >0,

From the treatment where the constants are supposed to be known we get

plx) = Cée“;‘“’z/? :

N

The largest possible ¢ that gives p(z) <1 for all > 0 is

acceptance probability

= %6_1/2 — 7602 |

which is also the efficiency of the rejection method: the probability of getting
an acceptance on a given trial is 76%.
Example. We want to sample from the density
1 4
_ z* /4
r) = —e
plz) =~
by rejection from a gaussian. At first we consider rejection from a standard
normal. In that case,

zt 2?

blo)= 7 - S Ha (13)

To make sure b > 0, we compute that the minimum of ¥ is taken at * = £1

(v =0 = 2° = x). Thus, if a = —1/4, then min, ¥ (z) = 0, as needed.

10

We try to improve the efficience of this rejection method by rejecting from
a normal with variance o # 1. This makes ¢o(z) = x2/x0?, so (12) becomes
zt 2P

¢(x)zz_@+a ’

= +1/0, so a = —1/46*. To optimize the
best choice of 0. we use Zy = V2702, so ,

which now is minimized at =

acceptance probability, (, by the

from (11),
1 1

log(¢) = log(Z) + P log(o) + 5 log(27) .

To maximize this expression, we differentiate with respect to o and set the

derivative to zero. Since Z and 27 are independent of o, this gives Topt = 1:

our standard normal rejection was already optimal.

11

