Monte Carlo Lecture Notes I, Random Number
GGenerators

Jonathan Goodman *
Courant Institute of Mathematical Sciences, NYU

January 29, 1997

1 Introduction to Monte Carlo Methods

A Monte Carlo method is a numerical procedure that deliberately uses ran-
dom numbers (or numbers that are supposed to mimic random numbers) to
compute something. Usually, the quantity being computed is itself not ran-
dom, although it may be defined in terms of random numbers, for example,
the expectation of a random variable. Equally common is the introduction
of random numbers to solve a problem that did not have randomness in its
original definition, such as the ground state energy of an atom described by
the Schrodinger equation. I would not use the term Monte Carlo if you don’t
want a specific number but just want to simulate a random process (e.g. to
make a random map for a computer game).

Usually, Monte Carlo methods are used to overcome the “curse of dimen-
sionality” that prohibits the use of “deterministic” methods. For example,
suppose you want to compute

/Rd fla)dx

*goodman@cims.nyu.edu, or http://www.math.nyu.edu/faculty /goodman, T retain the
copyright to these notes. I do not give anyone permission to copy the computer files related
to them (the .tex files, .dvi files, .ps files, etc.) beyond downloading a personal copy from
the class web site. If you want more copies, contact me.

where © = (:1;1, ey :L'd), and the dimension of integration, d, is large. Such

integrals arise in many fields with d in the hundreds or millions or more. A
quadrature formula would approximate the integral by a sum

/Rdf(:zj)dx ~ A:L'dZ Z Z f(:z;lll,...,xfd))
i=lio=1 ig=1
If we use n quadrature points in each coordinate direction, the total number
of points is n?. For n = 10 and d = 30, this is infeasible on present or likely
future computers. All grid based methods have the property that the work
scales exponentially with the dimension.

Suppose, on the other hand that you can write f(x) = g(a)p(x) where
p(x) is a probability density function for a d dimensional random variable.
Suppose also that you can make many independent samples, X, from this
probability density. Then you can make the Monte Carlo approximation

[yt = [atwiptente = Bl X))~ -3 ol

The error in this approximation usually is on the order of n~'/2, which is
not great; but it is much better, for large d, than the quadrature formula. In
many cases, there are Monte Carlo methods with the property that the work
needed to reach a specified accuracy, ¢, grows polynomially in 1/¢ and d.

2 Pseudo Random Number Generators

Almost all random quantities in Monte Carlo algorithms are in the end made
by manipulating hypothetical independent uniformly distributed random vari-
ables, £. That is, we assume that we have random variables, &, &, ..., that
are independent and all have probability density p,(z) =1if 0 <a <1, and
pu(x) = 0 otherwise. For most of the course, we will just assume that such
¢ can be made and not worry about how it’s done. In fact, it is impossible
to do it exactly. Any deterministic computer algorithm will produce numbers
that are correlated with each other to some extent. There are stories about
Monte Carlo computations that got the wrong answer because of correlations
in the pseudo random numbers. The best random number generators have
correlations that are almost impossible to detect and make almost any Monte
Carlo method work correctly, as if the numbers were truly random.

Almost all pseudo random number generators in use today work in the
following way. There is a “seed”, s = (s',...,s™) that consists of m 32
bit computer integers. There is a mapping, s’ = F(s), that produces a new
seed from a given one and a mapping, £ = G(s), that produces a number in
the interval [0, 1] from a seed. The mappings, F', and G, are usually given
by some modular arithmetic. To use such a random number generator, you
specify an initial seed, s;, and then produce the sequence & by repeatedly
using I and Gt

fk == G(Sk) 5 Sk+1 = F(Sk) .

In C, this would be done' (with m = 2), by RanSet(int s1, int s2)
to set the seed, and xi = Rand() to get a new uniform random variable
independent of the previous ones. The mappings [’ and G are carried out by
the procedure Rand (). There probably will be a routine RanGet (int *s1,
int *s2) that sets s1 and s2 to be the current seed. This allows programmers
to do a long Monte Carlo run in several batches.

To use a pseudo random number generator, it is important to remember
to set the seed in the beginning and not to set it again. If you do two runs
with the same initial seed and the same code, you will get exactly the same
result. (Pseudo random numbers are not really “random”.) This can be
very helpful in debugging computer programs. A pseudo random number
generator with m = 1 (a 32 bit generator) should not be used because it
must cycle (produce the same numbers in the same order again) in no more
than & = 23% = 4 billion steps. Monte Carlo computations often use more
than this.

!The actual procedure and variable names will depend on the random number generator
you use.

