
Monte Carlo Lecture Notes I, Random NumberGeneratorsJonathan Goodman �Courant Institute of Mathematical Sciences, NYUJanuary 29, 19971 Introduction to Monte Carlo MethodsA Monte Carlo method is a numerical procedure that deliberately uses ran-dom numbers (or numbers that are supposed to mimic random numbers) tocompute something. Usually, the quantity being computed is itself not ran-dom, although it may be de�ned in terms of random numbers, for example,the expectation of a random variable. Equally common is the introductionof random numbers to solve a problem that did not have randomness in itsoriginal de�nition, such as the ground state energy of an atom described bythe Schr�odinger equation. I would not use the term Monte Carlo if you don'twant a speci�c number but just want to simulate a random process (e.g. tomake a random map for a computer game).Usually, Monte Carlo methods are used to overcome the \curse of dimen-sionality" that prohibits the use of \deterministic" methods. For example,suppose you want to compute ZRd f(x)dx�goodman@cims.nyu.edu, or http://www.math.nyu.edu/faculty/goodman, I retain thecopyright to these notes. I do not give anyone permission to copy the computer �les relatedto them (the .tex �les, .dvi �les, .ps �les, etc.) beyond downloading a personal copy fromthe class web site. If you want more copies, contact me.1



where x = �x1; : : : ; xd�, and the dimension of integration, d, is large. Suchintegrals arise in many �elds with d in the hundreds or millions or more. Aquadrature formula would approximate the integral by a sumZRd f(x)dx � �xd nXi1=1 nXi2=1 � � � nXid=1 f(x1i1; : : : ; xdid) :If we use n quadrature points in each coordinate direction, the total numberof points is nd. For n = 10 and d = 30, this is infeasible on present or likelyfuture computers. All grid based methods have the property that the workscales exponentially with the dimension.Suppose, on the other hand that you can write f(x) = g(x)�(x) where�(x) is a probability density function for a d dimensional random variable.Suppose also that you can make many independent samples, Xk, from thisprobability density. Then you can make the Monte Carlo approximationZ f(x)dx = Z g(x)�(x)dx = E� [g(X)] � 1n nXk=1 g(Xk) :The error in this approximation usually is on the order of n�1=2, which isnot great; but it is much better, for large d, than the quadrature formula. Inmany cases, there are Monte Carlo methods with the property that the workneeded to reach a speci�ed accuracy, �, grows polynomially in 1=� and d.2 Pseudo Random Number GeneratorsAlmost all random quantities in Monte Carlo algorithms are in the end madeby manipulating hypothetical independent uniformly distributed random vari-ables, �. That is, we assume that we have random variables, �1, �2, : : :, thatare independent and all have probability density �u(x) = 1 if 0 � x � 1, and�u(x) = 0 otherwise. For most of the course, we will just assume that such� can be made and not worry about how it's done. In fact, it is impossibleto do it exactly. Any deterministic computer algorithm will produce numbersthat are correlated with each other to some extent. There are stories aboutMonte Carlo computations that got the wrong answer because of correlationsin the pseudo random numbers. The best random number generators havecorrelations that are almost impossible to detect and make almost any MonteCarlo method work correctly, as if the numbers were truly random.2



Almost all pseudo random number generators in use today work in thefollowing way. There is a \seed", s = (s1; : : : ; sm) that consists of m 32bit computer integers. There is a mapping, s0 = F (s), that produces a newseed from a given one and a mapping, � = G(s), that produces a number inthe interval [0; 1] from a seed. The mappings, F , and G, are usually givenby some modular arithmetic. To use such a random number generator, youspecify an initial seed, s1, and then produce the sequence �k by repeatedlyusing F and G: �k = G(sk) ; sk+1 = F (sk) :In C, this would be done1 (with m = 2), by RanSet(int s1, int s2)to set the seed, and xi = Rand() to get a new uniform random variableindependent of the previous ones. The mappings F and G are carried out bythe procedure Rand(). There probably will be a routine RanGet(int *s1,int *s2) that sets s1 and s2 to be the current seed. This allows programmersto do a long Monte Carlo run in several batches.To use a pseudo random number generator, it is important to rememberto set the seed in the beginning and not to set it again. If you do two runswith the same initial seed and the same code, you will get exactly the sameresult. (Pseudo random numbers are not really \random".) This can bevery helpful in debugging computer programs. A pseudo random numbergenerator with m = 1 (a 32 bit generator) should not be used because itmust cycle (produce the same numbers in the same order again) in no morethan k = 232 = 4 billion steps. Monte Carlo computations often use morethan this.
1The actual procedure and variable names will depend on the random number generatoryou use. 3


