Programmazione operativa

GESTIONE DELLA PRODUZIONE

Uglietti Luigi 14 maggio 2009

l.uglietti@wisefrogs.com

La programmazione operativa

La programmazione operativa (o di breve periodo, o scheduling), ha lo scopo di tradurre gli ordini di produzione (intesi come richieste) in ordini di produzione operativi (intesi come decisioni)

Le fasi dello scheduling

- Allocazione delle operazioni:
 - Operazioni → Macchine
- Allocazione della produzione nel tempo
 - Operazioni → Istante temporale
- Sequenziamento lavori sulle macchine
 - Tempo → Macchine

Le tecniche di scheduling (1/3)

Sono stati sviluppate numerose tecniche applicabili a diverse situazioni produttive, ma che hanno solo in minima parte trovato applicazione nella realtà. Questo a causa di fattori quali:

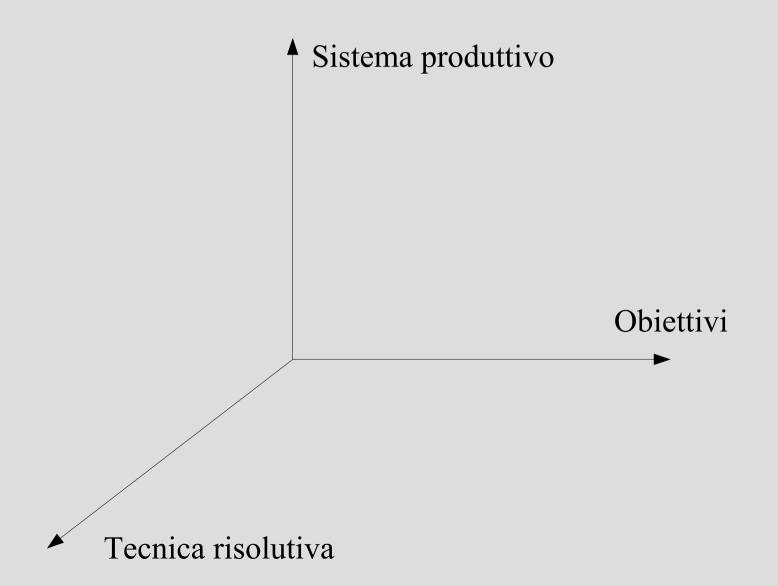
- Dati estremamente numerosi
- Dati soggetti a continui variazione
- Notevole aleatorietà dei tempi
- Multiobiettivo

Le tecniche di scheduling (2/3)

Esistono fattori che hanno invece aumentato l'interesse verso queste problematiche

- Crescente grado di automazione e flessibilità dei sistemi produttivi
- Sviluppo di sistemi informativi di produzione sempre più integrati verso il basso
- Evoluzione degli Strumenti hardware e software

Le tecniche di scheduling (3/3)


Alcune definizioni:

- JOB: lotto di pezzi (al limite unitario) lavorato nel sistema. L'unità elementare di programmazione è infatti il singolo item.
- ROUTING: è il ciclo di lavorazione (o tecnologico) del job; insieme ordinato di operazioni da eseguire per la lavorazione del job.

Ipotesi nella programmazione operativa

- Risorse note e fisse
- Una sola risorsa critica
- Job completamente definiti
- Tempi di trasporto trascurabili
- Non si considera l'influenza di buffer
- Tutti i job assegnati devono essere compiuti
- Una macchina può lavorare un solo job alla volta
- Un job non può essere lavorato contemporaneamente su più macchine → un'operazione inizia solo al termine della precedente (no lap-phasing)
- Trascurati i costi di mantenimento a scorta

Classificazione dei modelli

Tecniche risolutive (1/6)

- Metodi di ottimizzazione analitici
 - Esiste una 'formula risolutiva'
 - E' possibile una ulteriore distinzione tra metodi continui e discreti (in relazione al dominio in cui si cercano le soluzioni)
 - Trovano impiego in situazioni in cui si voglia tenere in considerazione fattori non deterministici (Teoria del controllo)

Tecniche risolutive (2/6)

- Metodi di ottimizzazione algoritmici
 - Sequenza di passi per costruire della soluzione
 - E' possibile distinguere tra algoritmi general purpose e specifici
 - Tra i metodi general purpose è possibile distinguere tra metodi enumerativi e metodi di calcolo

Tecniche risolutive (3/6)

- Metodi euristici per sostituzione di obiettivo Rimpiazzano l'obiettivo del problema con un altro scelto in modo che:
 - Abbia una dipendenza meno complessa con le variabili decisionali
 - La soluzione così ottenuta sia 'buona' (anche se non ottima)

Tecniche risolutive (4/6)

- Metodi euristici miopi
 - Trascurano alcune variabili decisionali del problema (senza implicare una peggioramento significativo della soluzione)
 - Si distinguono tra metodi miopi rispetto allo spazio (neighborhod search) e al tempo (hill-climbing)
 - Sono in genere altamente specifici rispetto al problema che risolvono

Tecniche risolutive (5/6)

- Sistemi esperti
 - Basati sulle tecniche di intelligenza artificiale
 - Cercano di formalizzare il patrimonio di conoscenza tipico dei decisori dei sistemi produttivi
 - Fuzzy theory, Neural Networks, Algoritmi genetici
- Metodi interattivi
 - Soluzione ottenuta attraverso una serie di intuizioni, tentativi e correzioni da parte di un decisore umano

Tecniche risolutive (6/6)

Simulazione

- A rigore non dovrebbero essere considerati metodi di risoluzione in quanto sono strumenti di verifica
- Non generano soluzioni, ma permettono di valutare la bontà delle soluzioni proposte da altri metodi risolutivi
- E' fondamentale il Design Of Experiment (DOE)

Sistemi di produzione (1/6)

Macchina singola

- Unica risorsa produttiva (impianto schematizzabile come una singola macchina) es. produzioni di processo, produzioni in cui uno stadio è più critico
- Job indipendenti o dipendenti (in relazione all'esistenza di relazioni di precedenza)
- Preemption ammessa o non ammessa (interruzione e ripresa di un job dopo la lavorazione di altri job)

Sistemi di produzione (2/6)

- Macchine parallele identiche
 - Unico stadio (come macchina singola), ma esistono un numero di macchine su cui i job possono essere lavorati indifferentemente)
 - Rispetto al caso di macchina singola, oltre al problema del sequenziamento, si aggiunge anche quello di allocazione dei job alle macchine

Sistemi di produzione (3/6)

- Macchine parallele generiche
 - Come nel caso di macchine parallele identiche, esite un certo numero di macchine in grado di lavorare i job
 - La caratterizzazione di ogni operazione dipende però dalla coppia job-macchina

Sistemi di produzione (4/6)

Open shop

- Ciclo tecnologico che richiede l'intervento di più macchine successive, ma in cui l'ordine di esecuzione (routing) può essere qualsiasi
- Ogni operazione è perciò identificata da una coppia di indici che identificano il job e la macchina

Sistemi di produzione (5/6)

Flow shop

- Ciclo tecnologico che richiede l'intervento di più macchine diverse, ma in cui l'ordine di esecuzione delle operazioni è lo stesso per tutti i job
- E' possibile distingure tra flow shop puro o generico
- Passing consentito o no passing

Sistemi di produzione (6/6)

Job shop

- Cliclo tecnologico che richiede più macchine diverse e in cui l'ordine di esecuzione varia da job a job
- La caratterizzazione dell'operazione è data da una terna di indici (j,i,k) in cui j è il job, i è la macchina e k l'operazione

- Qualunque sia la tecnica utilizzata, si tratta di massimizzare o minimizzare uno o più parametri di prestazione, funzione di variabili decisionali e esogene (vincoli)
- Le variabili decisionali sono costituite dall'assegnazione delle operazioni alle macchine e al timing
- I vincoli sono invece dettati dalle caratteristiche fisiche e tecnologiche dell'impianto

- Parametri di prestazione (1/3)
 - Tempi di lavorazione dei job (t_j, t_{ji}, t_{jik})
 - Data di possibile inizio della produzione r
 - Data di consegna d_i
 - Data di ingresso del job nel sistema I_j
 - Data di completamento C_j
 - II lateness L_j=C_j-d_j
 - II tardiness T_j=max{0,L_j} (no anticipo)

- Parametri di prestazione (2/3)
 - Il tempo di attraversamento (flowtime)

$$F_j = C_j - I_j$$

- Medio lateness
$$LM = \frac{\sum L_j}{N}$$
- Medio tardiness $TM = \frac{\sum T_j}{N}$
- Medio flowtime $FM = \frac{\sum F_j}{N}$

- Medio tardiness
$$TM = \frac{\sum T_j}{N}$$

- Medio flowtime
$$FM = \frac{\sum F_j}{N}$$

- Job in ritardo
$$NT = \sum \delta(T_j)$$
 dove

 $\delta(T_i) = 1 \operatorname{se} T_i > 0$

 $\delta(T_i) = 0$ se $T_i = 0$

- Parametri di prestazione (3/3)
 - Coefficiente di saturazione della macchina i

$$TS_i = \frac{\sum t_{ji}}{MAK}$$
 dove $t_{ji} = tempo di lavorazione$

Coefficiente di saturazione medio del sistema

$$TSM = \frac{\sum \sum t_{ji}}{M \ MAK}$$
 dove $M = numero \ di \ macchine$

- Work-in-process

$$WIP = \frac{1}{b-a} \int_{a}^{b} WIP(t) dt \text{ dove } \begin{cases} a = min_{j} \{I_{j}\} \\ b = max_{j} \{C_{j}\} \end{cases}$$

Tempo di setup complessivo

$$SUC = \sum_{i=1}^{M} SU_{i}$$
 dove $SU_{i} = setup complessivo sulla machina i$

- Obiettivi della programmazione operativa
 - Minimizzazione del medio latenessi
 - Minimizzazione del medio tardiness
 - Minimizzazione del medio flowtime
 - Minimizzazione del numero job in ritardo
 - Minimizzazione del makespan
 - Massimizzazione del coefficiente di saturazione medio del sistema
 - Minimizzazione del WIP
 - Minimizzazione del tempo di setup totale

Modello di Karg-Thompson (1/3)

Ipotesi

- N job indipendenti tra loro, disponibili al tempo 0
- Date di consegna non rilevanti
- Non è ammessa la preemption dei job
- Tempi di setup dipendenti dalla sequenza
- Funzione obiettivo
 - Minimizzazione del tempo complessivo di setup

Modello di Karg-Thompson (2/3)

- Metodo Euristico
- Monomacchina
- Passi
 - Selezionare casualmente due job
 - Selezionare un nuovo job e provare a disporto in una posizione della sequenza corrente calcolando il SU
 - Allocare il job al passo con in minimo SU e tornare al passo 2

Modello di Karg-Thompson (3/3)

- Il risulato dipende da
 - La scelta della coppia iniziale
 - Dall'ordine con cui gli altri job vengono considerati per l'inserimento nella sequenza
- Per migliorare il risultato si può ripetere l'algoritmo più volte, iniziando sempre con coppie diverse

Modello di Hodgson (1/3)

Ipotesi

- N job indipendenti tra loro, disponibili al tempo 0
- Date di consegna note
- Preemption non ammessa
- Tempi di setup nulli o indipendenti dalla sequenza
- Funzione obiettivo
 - Minimizzazione del numero di job in ritardo

Modello di Hodgson (2/3)

- Metodo di ottimizzazione algoritmico
- Monomacchina
- Passi
 - Creare l'insieme E* con i job in ordine crescente di date di consegna e L*={}
 - Se in E* non ci sono job in ritardo E=E* e L=L*, altrimenti identificare il primo job k in ritardo
 - Spostare il job con tempo di lavorazione più lungo tra i primi k in E* in L* e tornare al passo 2

Modello di Hodgson (3/3)

Job _j	t _j	d _j
1	1	2
2	5	7
3	3	8
4	9	13
5	7	11

Modello di Johnson (1/3)

Ipotesi

- Flowshop con M=2 sempre disponibili
- N job indipendenti tra loro, disponibili al tempo 0
- Date di consegna non rilevanti
- Preemption non ammessa
- Tempi di setup nulli o indipendenti dalla sequenza
- Funzione obiettivo
 - Minimizzazione del makespan

Modello di Johnson (2/3)

- Metodo di ottimizzazione algoritmico
- Flowshop
- Passi
 - Per tutti i job calcolare min_i{t_{i1},t_{i2}}
 - Se il minimo è sulla macchina 1, mettere il job nella prima posizione disponibile della sequenza e andare allo step 3
 - Se il minimo è sulla macchina 2, mettere il job nell'ultima posizione disponibile della sequenza
 - Rimuovere il job assegnato e tornare al passo 1

Modello di Johnson (3/3)

Job _j	t _{j1}	t _{j2}
1	3	6
2	5	2
3	1	2
4	6	6
5	7	5