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Research Institute (~50 people) in Lugano since 1988

Basic Research (swiss National Science Foundation)
= Optimization, Machine Learning,
= Bio-Inspired Algorithms, Artificial Neural Networks
= Business week in 1997 classified IDSIA among the
best 10 worldwide Al institutes
Applied Research (CTI, European Commission, Companies)

= Optimization in transport (multimodal terminals, fleet
of vehicles) and production.

= Data Mining

Contents

Most of the real life problems are difficult (NP-
hard)

Most of the problems can be represented and
modeled as combinatorial optimization problems

Exact Algorithms are not effective due to time
limitation and size of the search space.

Metaheuristics are new-generation heuristic
algorithms to face difficult combinatorial
problems whose dimensions in real life
applications prevent the use exact approaches

= Contents:
= MetaHeuristics
= Simulated Annealing
= Iterated local search
= Tabu search
= Variable Neighborhood search
= Genetic Algorithm
= Ant Colony Optimization

= Traveling Salesman Problems
= Constructive (NN, insertion, convex hull)
= Local searches (2-opt 3-opt lin-kernighan)
= Meta-heuristics (all)
= Mathematical formulation
= Branch and bound

= Contents:
= Sequential ordering problem (scheduling with
precedence constraints and one machine)
= Formulation and properties
= Fast Constructive algorithms (SOP-init)
= Local searches (SOP-3-Exchange)
= Meta-heuristics (HAS-SOP, Maximum Partial
Order/Arbitrary Insertion Genetic Algorithm), results
and comparisons
= Vehicle routing problems
= Formulation, classification and properties
= Capacitated VRP. VRP with Time windows
= Local searches (Cross-Exchange)

= Meta-heuristics (MACS-VRPTW, VRP-TABU), results
and comparisons

Course Contribution

Metaheuristic Algorithms - Massimo Paolucci
Nur Evin Ozdemirel - IE 505 Heuristic Search

Holger H. Hoss - Thomas Stuetzle — Stochastic
Local search Foundations and Applications




Combinatorial Optimization Problems

COP is an optimization problem with discrete
decision variables

Definition:
Let M={1.... m} a fimite set, c=(c,.....c,,) an m-vector.
For FocM let e(F)= ¥ e and F a collection of subsets of M
iz

. . 4
defined according to some rules.

Thena COPis min{c(F): Fe F}

TSP: Traveling Salesman Problems

Problem: given N cities, and a distance function d between
cities (usually time or kilometres), find a tour that:
® goes through every city
once and only once e
® minimizes the total distance
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Job Shop Scheduling Problems

We have
 a set of resources (machines)
* a set of jobs
¢ a job is a sequence of operations/activities

» sequence the activities on the resources

*An objective function to minimize
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The goal is to assign to each operation a starting time in
order to respect scheduling constraints.

Objective function: minimize the makespan (the completion
time of the last operation) 5

COP. Are easy problems?

Direct solution

Try all the possible permutations (ordered
combinations) and see which one is the cheapest
(using brute force)

The number of permutations is n! (factorial on
the number of cities, n)

The problem is NP-Hard

Compute the optimal solution ?

Clients [ N. Solutions

Evaluate all the possible i 12
combinations of customers and 8 256
trucks 16, 65'536

32 4.29.E+09|
) . 64 1.84.E+19
The factorial number of solutions 128|  3.40.E+38
grows as a function of 2" 256 1.16.E+77

512 1.34.E+154
1'024| 1.79E+308|

Time Number of Operations Clients
Less than 10 sec. 1'000'000'000'000 1000 mil. 40
1hour 60'000'000'000'000 6.00.E+13 46
1day 3'600'000'000'000'00C 3.60.E+15 52
1 year 1'281'600'000'000'000'000 1.28.E+18 60
100 years 128'160'000'000'000'000'000 1.28.E+20 67
1000 years 1'281'600'000'000'000'000'00C 1.28.E+21 70

Compute the optimal solution ?

Clients [ N. Solutions

Evaluate all the possible i 12
combinations of customers and 8 256
trucks 16, 65'536

32 4.29.E+09|
) . 64 1.84.E+19
The factorial number of solutions 128|  3.40.E+38
grows as a function of 2" 2561 1.16.E+77

512 1.34.E+154
1'024| 1.79E+308|

Time Number of Operations, 1000 time faster Clients
Less than 10 sec. 1'000'000'000'000'00C 1'000'000 mil. 50
1 hour 60'000'000'000'000'00C 6.00.E+16 56
1 day 3'600'000'000'000'000'000 3.60.E+18 62
1 year 1'281'600'000'000'000'000'0001.28.E+21 70
100 years 128'160'000'000'000'000'000'0001.28.E+23 77
1000 years 1'281'600'000'000'000'000'000'0001.28.E+24 80

How to solve these complex problems?

1) Exact methods
search algorithms (brute force)
linear integer programming formulation
search algorithm based on branch&bound

They guarantee to find and optimal solution but
they are only applicable to problem of small size or
they require long computational time.

How to solve these complex problems?

2) Heuristic and approximated algorithms

They try to compute in a short time a solution that it is
as close as possible to the optimal one.

Sometimes, uncertainties or imprecisions in the
problem parameters make the search of the optimal
solution not worthy

Therefore, it is often more practical to accept a "good"
solution, hopefully not too "far" from an optimal one




How to solve these complex problems?

Heuristic/Meta-Heuristic algorithm:

An algorithm that solves an optimization problem by
means of sensible rules (e.g., rules of thumb), finding
a feasible solution which is not necessarily an optimal
one

Approximated algorithm:

An algorithm that solves an optimization problem in
polynomial time finding a feasible solution with a
performance guarantee with respect to an optimal one

Approximated and heuristic algorithms

For approximated algorithms an upper bound of the
distance (error) of its solutions from the optimal one must
be given

Two types of errors:
Given a COP let
Zopr= min{c(x) : x e X} the optimal objective value and

Z, the objective value computed by an algorithm A

Absolute error: Ey = Z , — Zgpr

Relative error: Ry = (Z o= Zopr) | Zopr

Approximated and heuristic algorithms

Approximated algorithms should be preferred when available
No performance guarantee is defined for heuristic algorithms

Approximated algorithms are not always available or the
upper bound for the error they guarantee is not so good
(e.g., 250%)

Design (and prove) an approximated algorithm is often
difficult

Very often heuristic algorithm are preferred since they are:
simpler to implement
generally provide good/acceptable performance

generally faster

Definitions

G=(V,E) is a graph where
Vis a set of nodes
E c VxVis a set of archs or edges (/,))

d;; is the cost to go from node /to node J;

In case edges are
oriented the graph is directed and we talk about digraph
otherwise the graph is undirected and we talk about graph.

Walks, paths, tours and cycles

A graph G=(V,E) is given where |V| = n

*An edge set P = {v,v,, V,V3, ..., Vi1V } i @ v,V walk. If v, = v; for

each /= jthan P is a vyv, path. A tour C = {V,V,, V,V3, ..., ViV

Vv, }is a cycle.

eHamiltonian cycle: a cycle of length 7in a graph on 7 nodes is
called an hamiltonian cycle or hamiltonian tour. I.E. an
hamiltonian tour visits all nodes only once and returns to the
starting node

eEulerian tour: a closed walk that traverses every edge of a
graph exactly once.

Graphs and trees

A graph G=(V,E) is connected if it contains for every pair of nodes a
path connecting them. Otherwise is called disconnected. A graph G
is complete if for all jj €V it contains both arcs (i) and (/).

A tree T=(V,E) is a graph with the following properties: T is
connected and T does not contain cycles.

A spanning tree S=(V,E) is a tree that covers all the 7 nodes in V.
Each spanning tree has 7 nodes and /+1 edges.

@
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Combinatorial Optimization Problems

The Travelling Salesman Problem is a COP

— Given a graph G=(V'. E) let:
=M={1....m} the set of edge indexes E={e,..... ¢,}, m=|E
=c=(c,.....c,,) the edge costs
= F a collection of subsets F of M such that

F={an edge sequence corresponding to a hamiltonian cycle in G}

Then the TSP is the COP
min{c(F): F e F}

Combinatorial Optimization Problems

The Travelling Salesman Problem is a COP (2)

= Given a graph G=(V. E) let:
=N={1..., n} the set of vertex indexes r={v,...v,}, n=|V]
= D=[d,] an »x» distance malrix
= F a collection of subsets F of I such that
F={a cyclic permutation 7 of » items}
= & (i) the vertex visited after vertexiin x
- c¢fFl=c(m)= ; d

2 Ja(f)

YFeF

J

Then the TSP is the COP  min{c(F): F € F}

Most studied COP
TSP: Traveling Salesman Problems

Problem: given N cities, and a distance function d between all

couples of cities (usually time or kilometres), find a tour
that:

m goes through every city
once and only once
= minimizes the total distance

Traveling Salesman Problems

Symmetric TSP: given a complete graph G=(V,E) with edge weight d;,
find a shortest Hamiltonian tour in G.

A symmetric TSP is said to satisfy the triangle inequality if

d;j < dy . dy; for all distinct nodes i j,k
Of particular interest are the metric TSP where nodes corresponds
to points in some space and edge weights are given by evaluating
some metric distance between corresponding points. For example the
Euclidean TSP is defined by a set of points the the plane. The
correspondent graph contains a node for every point and edge
weights are given by the Euclidean distance of the points associated
with the end nodes

Asymmetric TSP: given a complete digraph G=(V,E) for some edge d;
# d; . Find a shortest Hamiltonian tour in G.

Traveling Salesman Problems

A game as first TSP example

Hamilton’s Icosian Game
(1800)

It is required to
complete a tour along
20 points with a
restricted number of
connections

Hamilton’s Iconsian game

TSP history

o First description in 1800 by the Irish mathematician Sir
William Rowan Hamilton and the British mathematician
Thomas Penyngton Kirkman.

» The general form is presented for the first time in the
mathematic studies in 1930 by Karl Menger in Vienna and
Harvard. The problem was also promoted by Whitney and
Merrill Flood a Princeton.

¢ A detailed description of Menger and Whitney work and
of TSP diffusion can be found in Alexander Schrijver “On
the history of combinatorial optimizatior!’, 1960.




TSP instances
TSP History

years Research team Problem size

'A breakthrough by George DantZig, Ray 1954 G.Dantzig, R. Fulkerson, and S. Johnson 49 cities
Fulkerson, and Selmer Johnson in 1954. o M Heldand KM Karp Gieites
1975 P.M.Camerini, L. Fratta, and F. Maffioli 100 cities

*49 - 120 — 550 - 2,392 - 7,397 — 19,509 cities. 7 M Grotseet 20ciies
From year 1954 to year 2001. 1980 H.Crowder and M.W.Padberg 318 cities
1987 M.Padberg and G.Rinaldi 532 cities.

.24,098 CItIeS by DaV|d Applegate, Robert leby, 1987 M. Gritschel and O.Holland 666 cities.
Vasek Chvatal, William Cook, and Keld Helsgaun 1987 M. Padberg and G.Rinaldi 2392 cites
in May 2004 1994 D.Applegate, R Bixby, V.Chvatal, e W.Cook 7.397 cities
1998 D.Applegate, R Bixby, V.Chvatal, e W.Cook 13.509 cities

2001 D.Applegate, R.Bixby, V.Chvital, ¢ W.Cook 15.112 cities.

2004 D.Applegate, R Bixby, V.Chvatal, ¢ W.Cook 24.978 cities

31 32
1954 1977
G.Dantzig, R. Fulkerson, and S. Johnson M.Grotschel
49 citta 120 citta
3 34
1987 1987
M.Padberg e G.Rinaldi M. Grotschel e O.Holland
532 citta 666 citta
36




1987
M.Padberg e G.Rinaldi
2.392 citta
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1994
D.Applegate, R.Bixby, V.Chvatal, e W.Cook
7.397
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1998
D.Applegate, R.Bixby, V.Chvatal, e W.Cook
13.509

2001
D.Applegate, R.Bixby, V.Chvatal, e W.Cook
15.112

2004
D.Applegate, R.Bixby, V.Chvatal, e W.Cook
24.978 cities in Sweden

Major progress due to Concorde software
available in http://www.tsp.gatech.edu/index.html
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TSPLIB library with hundred of benchmark problems

42




Complete Search approach:
model and solve
1. Model the problem as a state space (usually a
graph)
2. Search for the solution (with certain properties

e.g. min/max objective function) using a search
strategy in the state space (usually a tree)

3. The solution is a sequence of states

Problem definition

States: the set of possible problem configurations

Initial state: the state where the search process
starts.

Actions. Operators: state — { state }
Set of all possible actions

Goal A function GOAL?: state — {true, false}
It check if a given state is a goal

Cost function: gives a cost to the solution path

Search Algorithm

A search algorithm takes as input a problem space and a
starting state and tries to compute a path (solution) in the
best possible way.

The algorithm produces a search tree over the problem
space (or state space) that it is usually a graph

Strategy. search which node to expand among the nodes
not yet been explored. (This is the fringe = leaves of the
search tree)

To expand a node means to consider all nodes reachable
in one step (one action) from the selected node

General search algorithm

Solution: is a sequence of operators that bring you from current state to the
goal state

Basic idea: offline, systematic exploration of simulated state-space by
generating successors of explored states (expanding)

Function General-Search(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy

if the node contains a goal state then return the corresponding
solution

else expand the node and add resulting nodes to the search tree
end

Strategy: The search strategy is determined by the order in which
the nodes are expanded.

Search Tree

A node in the search tree has five components:
o A state

* The node who has generated it

¢ The action used to generate it

» The depth of the tree

» The cost of the path from the root

Traveling Salesman Problem

Goal: to visit all the cities only once

States: cities, costs on the edge should be the same in the two
directions (Symmetric TSP) or different (Asymmetric TSP)
Initial state: a city

Actions: to travel from one city to another city

Cost Function: sum of the edges on the traveled tour




Traveling Salesman Problem

Path Path: Path:
ABCDEA ABCEDA ABDCEA
Cost: Cost: Cost:
s 425 475

Breadth-first search

Expand shallowest unexpanded node

Implementation:
QUEVEINGEN = put successors at end of queue
(=
Breadth-first search, before visiting the children of a
node it visits his brothers.

The search tree is expanded in breadth.

Nodes at distance dfrom the root are expanded before
nodes at distance d4+1.

In order to obtain this behavior breadth-first search
uses as Open data structure a FIFO queue.

Traveling Salesman Problem

Space complexity of breadth-first

If a goal node is found on depth d of the tree, all
nodes up till that depth are created.

Thus: O(b9)

Breadth-first search

Based on a FIFO data structure
b = branching factor
d = solution depth
Expanded nodes: 1 + b+ 2 + ... + 1 + A — O(H)

Complexity in time and space: O(£9)

Breadth-first search

Example. b=10; 1000 nodes expanded x second;
1 node use 100 byte

Depth nodes Time Memory
0 1 1 millisec 100 byte
2 1 0.1 sec 11 Kilobyte
4 11111 11 sec 1 megabyte
G 10" 18 min 111 megabyte
8 10° 31 hours 11 gigabyte
10 10" 128 days 1 terabyte
12 107 35 years 111 terabyte
14 10" 3500 vears 11111 terabyte




Depth-first search

Expand deepest unexpanded node
Implementation:

QUEUEINGFN = insert successors at front of queue

L2

At each step we expand a node generated immediately
in the previous step.

First version is based on a list (open) which contains
nodes still to be expanded (this is our search fringe) .

Open is managed following to LIFO procedure

Traveling Salesman Problem

o.'/f Ex | c4 E'
Y/ /
00 |/ :zs; // <co[ o0 |
" E4 Wy [ E ce
l;/, {zs[/’ 475 |
/ & Ae Ae

Path,
ABDCEA

Cost:
475

Depth-first data structure

Y

AARh

Properties of depth-first search

o Time complexity: Ob ™)

e Space complexity: O(bm)

Remember:
b = branching factor
m = max depth of search tree

Heuristic Algorithms (1)

Basic Heuristics

They fast (in polinomial time) produce a feasible
solution to the problem by constructive a solution
from scratch or by the modification of a starting

solution
This is not considered as a real optimization process.

This is a fast way to produce a feasible (good) solution

Heuristic Algorithms (2)

MetaHeuristics procedures
They start from a solution (or a set of solutions)

This solution(s) is(are) iteratively modified using
stochastic processes.

Previous results are used to update the search and to
generate new better solutions.

This is an optimization procedure

10



Basic heuristic algorithms
Two main kinds of classic heuristics:
Constructive heuristics
Build the solution step by step at each iteration

Examples (TSP): Nearest Neighbourhood, Insertion,
Christofides alg.

Improvement heuristics

Start from a complete feasible solution and try at
each iteration to improve it

Examples (TSP): 2-OPT, 3-OPT, Lin-Kernigham

Note that this classification is not comprehensive
E.g., Lagrangean heuristics basically found non-feasible
solutions that try to improve towards feasibility

Heuristics for TSP

For large instances (or when short time is
available) is not possible to use exact algorithms.

It is needed to approximate the optimal solution
with heuristic approaches

Heuristic comes from the Greek Euristikein =
discovery

Complexity from O(n2) e O(n“log n).

Constructive algorithms

1. Start from a random node (not a complete solution)

2. Expand the starting node generating all possible next
nodes (not yet included in the partial solution).

3. Choose the best next node according to a local strategy

4. Extend the solution with this new node. This node
become the new starting node.

5. Iteratively adds element to the partial solution (going
back to point 2) until a feasible solution is computed.

Nearest Neighbour algorithm

Proposed by Flood (1956) is one of the most common
for solving TSP and ATSP problems.

Given n cities:
1. Consider a starting tour made by a random city a;;

2. When the current tour is a,...,a, with k<n, be a,,, the
city that does not belong to the tour and that is
closest to a,: a,; Is added at the end of the tour

3. When no more cities are available we stop the
procedure.

Nearest Neighbour (1/2)

Starting from E

A 3]s |10 .C

B 13 47 |s B LY
C 8 4 6 4 .

D 1w 70 2

E || s | a2 E. .D

Example from Ercoli C., Re B., Progetto TSP, Universita di Camerino, 2003-2004

Nearest Neighbour (2/2)

11



Nearest Neighbour: conclusions

* The algorithm is not very efficient. The first edges are
very short while the final edges are usually very long

« In general the length of the tour in relation with the
optimal tour length grows following a log n formula

eComputational complexity is

Agure 1. The Nearest Neighbor heuristic.

Nearest Neighbour: conclusions

* The algorithm is not very efficient. The first edges are
very short while the final edges are usually very long

« In general the length of the tour in relation with the
optimal tour length grows following a log n formula

e«Computational complexity is O(n?).

. The Nearest Neighbor heuristic.

Nearest Neighbour :
results for random problems

Problem 102 103 104 105 106
% Error 25.6 26.2 24.3 23.6 23.3
Over the
Held&Karp
lower bound

D.S. Johnson and L.A. McGeoch, 1997.

Nearest Neighbour :
results for TSP LIB problems

Probles Varant 1
8159 20,79
lis318 2685
11417 2128

pebaaz | 7030
wBT4 29,60
piB4 a0

rat783 713 |
priong 24.35 |
w060 30.43 |
| pevaars 2814 |
d1291 7297
11323 2230 |
111400 4242 )
w1432 25.80
211877 27,65
1656 25.90
miT48 2567 |
rlieed war
w2162 2580
P23 2496

pebaoza 23.63
113795 2444
£n14461 25,31
16954

Average |

G. Reinelt, 1994.

Greedy Heuristic

The Greedy heuristic gradually constructs a tour by
repeatedly selecting the shortest edge and adding it to the
tour as long as it doesn't create a cycle with less than N
edges, or increases the degree of any node to more than 2.
We must not add the same edge twice of course.

procedure TSP greedy
(1) Sort E, such that ¢; < c3 £...,< ey
(2) SetT=40.
(3) Fori=1,2,...,m:

(3.1) f TU {e;} can be extended to 2 Hamiltonian tour (or is a Hamiltonian tour),
then set T'= T'U {e;}. .

end of TSP_greedy

Complexity O(nZog(n))

Multi-fragment greedy heuristic

1. We start with the shortest edge ad we add the edges
in increasing order only if they do not create a 3-
degree city

Vpide ] S o]
~v v, g g
.:-‘)."?-:
-
. 240 '
{ L R 'L_ e 1
Figure 5. The Multiple Fragment heuristic.
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Improvement heuristics:

Enlarging a feasible initial solution

Starts from a feasible solution (a tour) in a subset of the
search space iteratively adds element to the partial solution
according to some strategy until a feasible results is
computed.

Usually it has better performance than greedy constructive
procedures

Insertion heuristics

procedure insertion
(1) Select a starting tour through k nodes vy, vy,... v (k 2 1) and set W = V'
{n],lq,...,v.}.
(2) Aslong as W s P do the following.
{2.1) Select a node j € W according to some criterion.
(2.2) Innert j at some position in the tour and set W =W {§}.
end of insertion

For je W, let
d () =minie, |V \W{
dmnx (.” = max {C” lieV \W }

s(j)= Z,,_r' w€

i

74

Insertion heuristics

1. Nearest insertion: insert the node that has the
shortest distance to a tour node, i.e. select j with

i) = Min{dn() | /€ W}
1. Build an initial tour W with cities i, e i, such that

Cip + Gy =MiN (G + )
izj

0 Y. *
AR wetit  °
e » LTI . -t
"- ‘J . ‘" —
b LA -

Insertion heuristics

2 Farthest insertion 1: insert the node whose minimal
distance to a tour node is maximal, i.e. select

rin(J) = max{dn()) | /€ W}

3 Farthest insertion 2: insert the node that has the
farthest distance to a tour node, i.e. select.

o) = max{dn () | /€ W}

4 Farthest insertion 3: insert the node whose maximal
distance to a tour node is minimal, i.e. select

e s oY s
o Bme Seadl EPe oy ) = MIN{ Gl () | /< W}
) Ve ate L) Ve e
C. 75 76
Insertion heuristics Insertion heuristics
8. Largest sum insertion: insert the node whose sum of
5 Cheapest insertion 1: choose the node whose

insertion causes the lowest increase in the tour
length (update of best insertion points for non-tour
nodes after each insertion is expensive)

6. Cheapest insertion 2: only partial update of best
insertion points

7. Random insertion: select the node to be inserted at
random

distances to tour nodes is maximal, i.e. select j with
sO) =max{s() | /e W}

9. Smallest sum insertion: insert the node whose sum of
distances to tour nodes is minimal, i.e. select j with

SO) = min{s() | /e W}
The selected node is usually inserted at the point

causing shortest increase in the tour length (there are
other rules)

13



Insertion heuristics

All standard versions (except cheapest insertion) run in
0o(n?)

Cheapest insertion can run in

0O(nZlog n), but requires O(n2) memory

Nearest and cheapest insertion tours are less than twice as
long as optimal when triangle inequality is satisfied

Random and farthest insertion can be 13/2 times longer
than optimal

Insertion heuristics

Figure 6.10 [lustration of insertion heuristics

Nearest insertion adds node i, farthest adds node j,
cheapest adds node k

79 80
Comparison of standard insertions: CPU time for Insertion Heursitics
Percent deviation of tour length from best lower bound
[] T 8 []
11.08 | 817 [ 815 | 7.78
18.39 | 9.18%| 2002 | 16.27
1239 | 3.29% 784 | ©
2115 | 12.23%| 27.07 | 2043
19.12 |11.64 |23.32 | 22.21
5.79%| 0.87 |11.30 |12.64
16.02 {13.37 | 26.37 | 25.02
16.61 | 12.50 | 23.98 | 25.42
18.67 | 11.43* 23.04 | 21.58
21.50 [16.58 | 20.56 | 28,
17.01%( 2213 |31.06 | 18.70
2481 (20864 [29.30 | 26.56
17.76 | 847 (1630 | 16.44
1265 (12.63 2384 | 20.54
17.08 (18.70 [ 26.65 | 17.97
1877 |17.69 [28.20 | 23.95
18.86 |13.87 [20.52 | 24.26
21.24 |17.30°| 2009 | 27.53
16.12%(19.76 | 28.26 | 28.98
6.65 | 31.75 | 28.32
17.08 | 16.69 |27.67 | 27.28
12.78%| 19.97 | 21.62 | 25.62 L] 1000 2000 3000 000 5000 000
1597 (12,99 |28.99 | 28.03
15934 | 27.40 | 2217 21.84%| 2271 | 3356 | 30.36 1] (2] Bl o4 -5
Average | 20.08 | 13.69 T7.22 | 14.51 | 24.51 | 22.34 Figure 6.13 CPU times for some insertion heuristics
‘Table 6.11 Results of insertion heuristics
81 82
Comparison of standard insertions with Comparison of standard insertions with
convex hull start
convex hull start
. 3 ] T ]
. — — — S 1| &EL | A3 TOR | TH
/ 1 [ 1042 TAT*| 1840 | 163
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Heuristics using spanning trees

Based on the observation that, given a Eulerian
tour containing all nodes, if the triangle inequality
is satisfied then we can derive a Hamiltonian tour
which is not longer than the Eulerian tour

Hence, particularly useful when triangle inequality
holds

Minimum Spanning tree (Kruskal)

Kruskal(G,w)
A=0
For each vertex v € V[G]
do Make-Set (v)
Sort the edges of E by non decreasing weight w
For each edge (e,v) e E, in order by non decreasing weight
do if Find-Set(u) = Find-Set(u) then
A:=Au{(uVv)}
Union(u,v)
Return A

Edge (u,v) is incrementally added to the forest if their two
endpoints do not belong to the same set (i.e. they do not
create a cycle)

Minimum Spanning tree (Kruskal)

Minimum Spanning tree (Kruskal)

Example from Introduction to Algorithms, Cormen et all, MIT press, 1991

Minimum Spanning tree (Kruskal)

Approximation algorithms for TSP

These algorithms produces feasible solutions in a “short
time”.

The first algorithm is for Euclidean TSP and it is based
on the mentioned MST

Approx2-TSP-tour(G)
Select a vertex r € V[G] to be a root vertex
Grow a minimum spanning tree T from G from root r
Let L the list of vertices visited in a preorder tree
walk of T

Return the Hamiltonian cycle H that visit the vertex
in the order of L

15



Approximation algorithms for TSP
Starting vertex is A

Here is the minimum spanning tree T

Approximation algorithms for TSP
a walk W on T gives the following W=ABCBAGFEDEFGHGA

A preorder walk on T list the vertex when they are first
encountered PW=ABCGFEDH that produces the tour H

C

Approximation algorithms for TSP

The mentioned algorithm guarantees that the cost of
the solution c(H) < 2*C(best_solution)

Since T is @ minimum spanning tree we have
¢(T) < C(best_solution)

The full walk W=ABCBAGFEDEFGHGA traverses every
edges exactly twice

c(W) = 2C(T)
so
C(W) < 2*C(best_solution)

but W is not usually a tour since he visits some vertex
more than one

Approximation algorithms for TSP

However by the triangle inequality we can delete a
visit to any vertex from W and the cost does not
increase

If a vertex v is deleted from W between u and w the
resulting ordering specifies going directly from u to w

Appling this operation we can remove from W all but
the first visit to each vertex.

In our example this leaves the order ABCGFEDH that
is the same of the preorder PW.

Approximation algorithms for TSP
Let H be the cycle corresponding to this preorder
walk.

This is exactly the Hamilton cycle produced by the
algorithm Approx2-TSP-tour so we have

C(H)<C(W) < 2*C(best_solution)

In spite of the nice ratio bound and his Complexity
O(V?) this algorithm is not so effective in practice.
Other approaches are usually used.

Savings method

*Originally developed for VRP (Clarke and Wright, 1964)
eStarting with n-1 two-node tours all connected to a
base node, merges short subtours to obtain a
Hamiltonian tour

«The crucial point is to find the best merging possibility

*Runs in O(n3), or O(nZlog n) with O(n2) memory to
store the matrix of possible savings

16



Clarke-Wright Saving Heuristic (1964).
A constructive procedure proposed for VRP

procedure savings
(1) Select a base node b € V' and set up the n— 1 tours (b,v), v € V' \ {b} consisting
of two nodes each.
(2) As long as more than one tour is left perform the following steps.

{2.1) For every pair of tours T} and T; compute the savings that is achieved if
the tours are merged by deleting in each tour an edge to the base node and
connecting the two open ends. More precisely, if ub and vb nre edges in
different tours then these tours can be merged by eliminating ub and vb and
adding edge uv resulting in a savings of ey + 6pp — Eup-

(2.2) Merge the two tours giving the largest savings.
end of savings

Clarke-Wright Saving Heuristic

(Fiala 1978)

Saving Vs Greedy Heuristic

Saving Vs Greedy Heuristic: Time

™0
Problem Standard [Fast version Groedy
4198 872 8.08 X
110318 8.14 8.54 1413 bl
1447 1163 1874 948%
pebid2 10.05%| 10.20 14.62
w4 11.62 12.38 10.20%) 0 -
pesE 10.64*| 10.66 18.82
rat783 10.06 9.88%) 10.04
pricoz 124 w2ee| 1296 wl
11060 179 e 1216
pebiiTa 9.08%| 10.53 13.66
41281 .77 7.55% 8.89
rli3z3 7.48%| 807 813 0
£11400 12.12%) 14.41 16.30
uid32 0.27*] 10.41 15.04
111877 14.43 15.60 8.63°| 0 |-
41655 10.97 12.39 10.49%
=iT4s 13.66 13.68 10.40%|
11889 13.65 13.32 10.82*
w2162 10.69 10.67"} 12.10 -
2392 12.24%| 12.40 13.42
peb3038 10.73 10.517) 28
113795 16.52 168.25 14.60% L]
frl4461 10.84 10.65%) 1109 L] oo 2000 2000 000
r15934 1138 1253 1004
Average LT 1139 .98 =8 - IFS] 0]
Tuble 6.20 Results for savings heuristics and greedy Figure 6.21 CPU times for savings heuristics and greedy
29 100}
Comparison of TSP heurlst_lc_s TSP Heuristics
(with best solution by any other heuristic)
Table IV, Local Optimization Applied to Each Heuristic
Hemastle Fo. of best Falaiive
woiutions guality — Percent Over Lower Bound
Savings (standasd) [] 156 Hewristic ___ "
Swringa (fast) B 22 Name  Start Start E
Savings (approx. 5 27
Fasthest insection 1 (convhull) 3 364 242 4
Ponien e et i b ™ 2 3
mmiumﬁm - 503 denn 242 i
Cheapest isertion {convhall) - 508 mf 157
Fst chespeat insertion {convhall} - 508 ik 269 26
Fust cheapeat inserti - 7.53 38
Chespest Insertion 1 7.54 fa 13.2
Chastofides - T 15.2 16
Mearest insertion (convhell) - 2.99 ra .2 -
Neaat o vasinat 4 i e ni 268
Funtont s fssul) B 1 fi 130 76
Miskmam sam lnsertion fooavhall) - 1158 " 148 i
Furthest fusertion 2 - 207 w4
Misimsm sam i - 1207 mst 445
st iasestion 2 [convhull) 1233 ch 149 H
Fasthest fnsertion (fast) - 1281 2
Maxizu sum lnsrtion (coavhull) - 1307 ip 55.2
o) : 1as
mmu\'?un\;u‘;r;‘r: }:f-u) - b (Bentley 1992)
et Tnsstion 3 (fat] - 1
Furthest insertion 3 (fast) - 1566 . .
Hn::lnml:nulﬁm.:? - s NN=Nearest Neighbourhood, DENN=Double Ended NN, MF=Multiple
i led Fragment, N4, FA, RA=Nearest, Farthest, Random Addition, N, FI,
Neee o ) b e RI=Nearest, Farthest, Random Insertion, MST=Min. Spanning Three,
e iy ) B 25 CH=Christofides, FRP=Fast Recursive Partition.
cheapeat insertion {fast)
Doubls tree = 2190 101 0]
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SPACE FILLING CURVE (something
differente!!)

A space filling curve is a continuous mapping from a lower-
dimensional space into a higher-dimensional one. A famous
space filling curve (due to Sierpinski), is formed by repeatedly
copying and shrinking a simple pattern”

3.

s

|

SPACE FILLING CURVE

Constructive technique: overlap the space filling area
with cities. Each point is associated to the closest line.
Following the line the visit order is determined.

SPACE FILLING CURVE

A TSP tour of 15,112
cities in Germany.

This tour was induced
by the Sierpinski
spacefilling curve in less
than a second and is
about 1/3 again as long
as the shortest possible.

Notice that for the optimal solution the
computation was carried out on a network
of 110 processors. The total computer
time used in the computation was 22.6
years, scaled to a Compaq EV6 Alpha

processor running at 500 MHz.

10s]

Local search algorithms
We now start from a complete solution
Ais the search space, i.e. all problem solutions
We have an objective function min {As) | s € A}
We define a neighborhood function N
Nis a mapping from A4 — 24that defines for each

solution s € A a subset of solutions Ms) € A, the
neighborhood of s.

105]

Local Search (LS)

LS algorithm is basically an improvement heuristic

LS starts from a feasible initial solution and tries to
improve it by exploring the solution neighbourhood

LS iterates the exploration step from the new solution
until no further improvement is possible

LS is a descent method: it founds a local optimum
The computation time needed by LS (improvement
heuristics) is generally much longer than the one of

constructive algorithms

LS for COP needs a proper definition of the
neighbourhood of solutions 10

Hill climbing

The algorithm explores the entire neighborhood and search
always for a better solution until no improvement is possible

For each solution current it generates and evaluates all the
neighborhoods M current)

Greedy search: in case the best solution in M current)
is better than the actual best we restart from current (random
search in case of conflict) otherwise we stop

Simplified version: as soon as we found a better
neighborhood we continue the search from the associated
solution avoiding to visit all the neighborhoods

10s]

18



Hill climbing

Hill climbing
input
initial solution s, .
objective function f
neighborhood function N

current « S,

while terminal condition is met (usually no

improvement or time limit)
next <« the best solution in N(current)
if Ff(next) <
current <« next
end while
output. curr.ent i i
Greedy algorithm is only based on local information.
It is not able to escape from local minimum

f(current)

100

Local Search: Local and global optimum

O Local optimum (min)

A locally optimal solution (or local optimum) with
respect to a neighbourhood structure N(x) is a
solution x° such that

vx e N(x°) Z(x°)<Z(x)

[0 Global optimum (min)
A global optimal solution (or global optimum) is a
solution x* such that vV x € X Z(x*)<Z(x)

0]

Local Search

[0 Basic LS tracks a trajectory in the solution space,
from a feasible solution to another, until no
improvement is found

.

{7 Gannat be improved =local optimal"sglution

. Explored \
_ candidats Exploration trajectory

. Solution Space X'

Local Search

[ 2-OPT, 3-OPT and Lin-Kerninghan are example of LS
based improvement heuristics for TSP

[0 2-OPT, 3-OPT and Lin-Kerninghan differ for the kind of
neighbourhood they explore

[0 Several variations exist for the basic LS applied to COP:
Selection of the next solution strategy
Best improvement (complete exploration of N(x) )
First improvement (partial exploration)
Neighbourhood exploration strategy
Complete exploration of N(x)
Candidate List Strategy (define a smaller N'(x)cN(x))
Final intensification
Termination criterion
Maximum number of iterations
Maximum CPU time

Local Search — N(x)

Comments:
The larger is [N(x)| the more likely is the possibility of
finding a high quality solution

The larger is [N(x)| the higher is the computational
time required

A trade-off between solution quality and exploration
time is needed

Techniques have been proposed to deeply explore
neighbourhood of exponential dimension in polynomial
time (e.g. Dynasearch)

Local Search — N(x)

Comments:

The dimension of a neighbourhood can also
dynamically varied:

IN(x)| is enlarged when no improvements is found
after a fixed number of iterations (e.g., Variable
Neighbourhood Descent)

Nevertheless the main drawback of LS is its
propensity to be trapped in a (possibly bad) local
optimal solution
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Local Search K-Opt

1. Start from complete tour computed by another
heuristic

2. Compute the best (the first) k edge exchange that
improves the tour.

3. Execute this exchange

4. Search for another exchange until no improvement
is possible

usf

GAIN = (a,d)+(b,c)-(c,d)-(a,b)
Subpath (b,...,d) is reverted

Computational complexity O(n?) .
|

2 — OPT: example (1/3)

-
- - - - Edges to be removed ="
-+
i v =7 'I\\o *\
Initial Tour \. /
d

Subpaths

T
P

Subtour is invéEed
— New edges

2 — OPT: example (2/3)

- — - - Edges to b e removed ’ T
n .,
Step 1 e
<? /

Step 2 < %

— New edges

1s]

2 — OPT: example (3/3)

———

- — - - Edges to be removed
| .
ce e

Step 3 N\
" </ \./\‘

— New edges

9]

2-opt

While best_gain=0
best_gain=0
Fori=1ton
Forj=1ton
gain=compute_gain(i,j)
if (gain<best_gain) then
best_gain=gain
best_i=i
best_j=j
if first_improvement=TRUE then break
End for
if (best_gain<0 & first_improvement=TRUE) then break
End for
exchange(best_i,best_j)
End while
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Two possible new tours
GAIN1 = (a,d)+(e,b)+(c,f)-(a,b)-(c,d)-(e,f) no path is reverted
GAIN2 = (a,d)+(e,c)+(b,f)-(a,b)-(c,d)-(e-f) path (c,...,b) is reverted

Computational complexity O(n3) .

121

Double bridge

e f e f
Does not invert subtours
Computational complexity O(n?) .

12

2-opt 3opt : 2-opt for TSPLIB problems
results for random problems Fretie | Tondon | Nammi N[ Song
4198 804 | 3.18* 5.20
Table IV. Local Optimization Applied to Each Heuristic 1in31e 13.05 5.94° 843
11417 12.25 725 5.35*
euriatic Percent Over Lower Bound CPU Seconds pebédz 12.64 7.52 7.70°
Name S 2Opt ZHOpt 3Opt Sant 20pt 2H-Opt 3-0pt i 1240 st 35
B : : 66"
~ na 87 68 &5 4 O % 5t rat7e3 23 830 803"
desici 242 86 67 46 4 28 28 57 privoe 14.91 BAB® 9.07
o e o T Lo % P 55 41060 13.05 9.1 8.947
na %9 169 112 69 2% 45 &7 & pebIiTs 1285 242 s
& 132 118 95 69 s 2 52 75 d1291 17.72 9.62 622:
o 152 120 98 68 16 3 3 5% e 1250 o Soe
ni %8 169 13 68 46 65 7 101 1432 1424 1007 byt
fi :ig ! ;: ;—; g-: ;g g g 1;; 211577 2142 8.15¢ 12.59
i # ! A -
mat 445 128 93 56 16 44 5 50 i 1274 i Kt
S 148 67 49 38 M 40 ® 60 r11889 fren 864 BES
i 552 149 105 58 2 35 k] 73 162 19.89 10.02 B.64*
prass2 1620 g.27* 957
(Bentley 1992) pebanag 16.20 8.34% 838
NN=Nearest Neighbourhood, DENA=Double Ended NN, MA=Multiple i 138 sl
Fragment, N4, FA, RA=Nearest, Farthest, Random Addition, NI, £I, r15934 21.07 9.19* 10.08
RI=Nearest, Farthest, Random Insertion, MS7=Min. Spanning Three, Average (L] BAL &7 Reinelt. 1994
CH=Christofides, FRP=Fast Recursive Partition. From different starting tours . Reinelt, .
122| 124]
3opt for TSPLIB problems Lin-Kernighan for TSPLIB problems
Tavdow | Reaest N | Swings | Chratofides | Froblen | Wandom | Nearest N. | Saviegs |Chn
o T e 13 198 075 555 T48 103
2% e s 11n318 168 248 164 L4d*
a8, 0&2 s 417 310 a1t 129 274
\ Les 28 o pevia2 Lap 195 233 133"
Y 1.06* 5.78 BET4 196 248 211 0.93*
) 380 | 08 s pesa 171 307 0.05¢ 112
| 347 :0«2 by rat7Ted 207 2.03* m 321
] pnggi i :;(;._lr " o0 r:}m g.gg ;‘E'].\ 297 2.30%
1060 ! . g 273 1.78%
| m|om) B el m| o am
pihy 1\ ; A : 451 247% 3.20
| ri32s | 761 5t | 143 135 r11323 225 268 1790 280
f11400 2300 316 385 514
1432 234 229 2040 220
1677 .38 10.90 627 2.9%
1685 2630 354 385 I
wai74n 211 200° 250 260
riieen 248 345 350 2350
42153 388 300 433 2400
pr2392 a7 205 315 204t
peb3038 250 1820 267 258
113795 3.467 6.51 355 364
tnlaas 208 1.95° 247 226
r15934 321 239 355 2.40°
_ Average XL 323 280 7.40
From different starting tours G. Reinelt, 1994. From different starting tours G. Reinelt, 1994.
]23 123|
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How to speed up the search

Also with approximation algorithms for very large
problems the time required to compute feasible
solution is too large

The objective is to reduce the search space, the
running time and to keep high quality solutions.

Two methods are presented:
Static approach: nearest-neighbor-list

Dynamic approach: don't look bit

127,

Nearest-neighbor list

For each node we compute a priori the set of the n-
nearest-neighbor-list

These are the n nodes that are closest (according to
some metric) to the actual node

nearest-neighbor-list with n=10 for the problem u159

129

Nearest-neighbor list

All the previous algorithms can be executed only
considering the restricted set given by the nearest-
neighbor-list

A reasonable number for n is between 15 to 20

For random Euclidean TSP increasing n from 20 to 80
only improves the final tour of 0.1%

Fast insertions with candidate list:

Percent deviation of tour length from best lower bound

Problen T 3 3 T 57
di1ge |15.31 | 7.84% 0.41 | 1367 [1347 Y
11318 | 2509 | 2003 | 1885 | 2378 | 300 | s3as | oAz | 1280 113
11417 | 36.20 |31.08 | 33,92 | 44.57 | 24.36%| 24.38*| 26.82 .4
pcb4d2 | 28,85 | 18.59 | 2016 | 10.93 | 29.66 | 20.66 | 20.07 | 14.08¢|
ub74 2254 [17.34% 19.97 | 18.60 | 25.28 | 25.28 | 17.53 | 19.02 | 26.72
po54 | 48.50 [ 46.22 | 36.84% 42.62 | 78.21 [ 78.81 | 40.36 | 4491 |sa21
rat763 | 26.07 |15.35%| 1831 | 20.00 | 24.90 |24.90 | 17.47 | 1611 |29.58
pr1002 | 19.89%( 21.30 | 29.43 | 20.87 | 26.54 [26.50 |22.62 | 20.74 | 28.17
ui060 | 25.39 | 17.564*%| 20.42 | 20.78 | 22.95 | 24.07 |18.52 | 19.97 | 25.65

pcb3038 | 25.10 | 18.48%| 2147 19.67 | 25.61 | 25.72 | 20.05 | 20.00 | 28.57
£13796 | 36.77 | 24.96%| 20.32 | 30.18 (4D.31 | 40.62 |25.80 | 33.85 | 32.41
#n14461 | 2347 | 16.88*| 17.23 | 20.27 | 3174 |36.16 | 17.64 | 18.11 | 28.51
r15934 44,63 | 31.26%| 29.81 | 35,55 | 51.60 | 48.17 | 32.91 §33.391 | 37.97
Average | 29.69 | 22.85 | 24.58 | 25.84 [ 34.33 [ 34.91 | 23.28 | 24.48 | 30.29

Table 6.12 Results of fast insertion heuristics

From local search to meta heuristics

Local search procedures explores in a systematic way the
neighborhood of a given solution

The goal is to search the best move and to execute it.

It is usually efficient but it is not able to escape from local
minimum

In same case the neighborhood is to large
A way to solve the mentioned problems is the following:

1) Stochastically explore only a subset of the
neighborhood.

2) Accept solutions that are worst than the previous

Meta-Heuristic Algorithms

There is no unique definition for Metaheuristic (MH)
Algorithms:
e MHs are strategies to guide the exploration of a
solution (search) space
e The term metaheuristic (Glover, 1986) was used to
denote a high level strategy that iterates a lower level
heuristic whose parameters are progressively updated
e The first MHs were developed to overcome the
drawbacks of LS algorithm
e Metaheuristic is used also to denote modern heuristics

The best way to start MHs understanding is to
analyze their main (common) characteristics and to
define a classification
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Meta-Heuristic Algorithms
Two possible definitions:

“A metaheuristic is formally defined as an iterative
generation process which guides a subordinate heuristic by
combining intelligently different concepts for exploring and
exploiting the search space, learning strategies are used to
structure information in order to find efficiently near-optimal
solutions.” (Osman and Laporte 1996)

“A metaheuristic is an iterative master process that guides
and modifies the operations of subordinate heuristics to
efficiently produce high-quality solutions. It may manipulate
a complete (or incomplete) single solution or a collection of
solutions at each iteration. The subordinate heuristics may
be high (or low) level procedures, or a simple local search,
or just a construction method.” (VoB et al. 1999)

12

Meta-Heuristic Algorithms
Characteristics (Blum and Roli, 2003):

e MHs are strategies that “guide” the search process.

e The goal is to efficiently explore the search space in order to
find (near) optimal solutions.

e Techniques which constitute MH algorithms range from simple
local search procedures to complex learning processes.

e MH algorithms are approximate and usually non-deterministic.

e MH may incorporate mechanisms to avoid getting trapped in
confined areas of the search space.

e The basic concepts of MHs permit an abstract level
description.

e MHs are not problem-specific.

e MHs may make use of domain-specific knowledge in the form
of heuristics that are controlled by the upper level strategy.

e Todays more advanced MHs use search experience (embodied
in some form of memory) to guide the search.

Meta-Heuristics
MH “philosophies”:

Intelligent extensions of LS algorithms (Trajectory
methods):

The goal is to escape from local minima in order to proceed in the
exploration of the search space and to move on to find other
hopefully better local minima. They use one or more
neighbourhood structure(s) Examples: Tabu Search, Iterated Local
Search, Variable Neighbourhood Search, GRASP and Simulated
Annealing

Use of learning components (Learning Population-based
methods):

They implicitly or explicitly try to learn correlations between
decision variables to identify high quality areas in the search
space. They perform a biased sampling of the search space
Examples: Ant Colony Optimization, Particle Swarm Optimization,
Genetic Algorithms and Evolutionary Computation.

i3]

Meta-Heuristics
MH “philosophies™:

Intelligent extensions of LS algorithms (Trajectory
methods):

e The goal is to escape from local minima in order to proceed in
the exploration of the search space and to move on to find
other hopefully better local minima.

¢ They use one or more neighbourhood structure(s)

e Examples: Tabu Search, Iterated Local Search, Variable
Neighbourhood Search, GRASP and Simulated Annealing

Use of learning components (Learning Population-based
methods):

« They implicitly or explicitly try to learn correlations between
decision variables to identify high quality areas in the search
space.

e They perform a biased sampling of the search space

* Examples: Ant Colony Optimization, Particle Swarm
Optimization, Genetic Algorithms and Evolutionary Computation.

i3]

Meta-Heuristic Algorithms

Possible MH classifications:

¢ Nature-inspired vs non-nature inspired

¢ Population-based vs single point search
* Dynamic vs static objective function

¢ One vs various neighbourhood structures

¢ Memory usage vs memory-less methods

Meta-Heuristic Algorithms

MHs outline:
Trajectory methods:
Simulated Annealing
Tabu Search
Variable Neighbourhood Search
Population-based methods:
Evolutionary Computation (Genetic Algorithms)
Ant Colony Optimization

Particle Swarm Optimization
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MetaHeuristic search (Trajectory Methods)

Meta Heuristic search
input
initial solution s, (or an initial set of solutions)
objective function f
neighborhood function N
current « S, (current should also be a set of solutions)

while terminal condition is met
stochastically compute a solution next e N(current)
Following a criterium decide whether or not
to continue the search from next
by setting current « next
end while

output current

Very efficient: we keep active only one solution (or a set)
but we do not have any guarantee to reach the optimum

Simulated Annealing [Kirkpatrick, Gelatt, Vecchi 1983]

Simulated Annealing is an MH method that tries to avoid local
optima by accepting probabilistically moves to worse
solutions.

Simulated Annealing was one of the first MH methods
now a "mature" MH method

many applications available (ca. 1,000 papers)
(strong) convergence results

simple to implement

inspired by an analogy to physical annealing of metals

|

Simulated Annealing

Annealing is a thermal process for obtaining low energy
states of a solid through a heat bath.
1. increase the temperature of the solid until it melds
2. carefully decrease the temperature of the solid to
reach a ground state (minimal energy state, cristaline
structure)

Computer simulations of the annealing process
¢ models exist for this process based on Monte Carlo
techniques
¢ Metropolis algorithm: simulation algorithm for the
annealing process proposed by Metropolis et al. in
1953

Simulated Annealing [Kirkpatrick, Gelatt, Vecchi 1983]

It starts from an initial current solution

At each iteration a new solution nextis randomly chosen from
the neighborhoods of the current solution

If Anext) < R current) we start the next iteration from next

Otherwise the choice between nextand currentis done in
using a probabilistic function e-AE/T that is based on
AE=Afnext)-f current) and on a parameter T (temperature)
that decreases during the search

2]

Simulated Annealing(problem) return a solution
T < determine a starting temperature
current < generate an initial solution
best « current
While not yet frozen do
While not yet at equilibrium for this temperature do
next < a random solution selected from Nejg/ current)
AE <« f(next) - f(current)
if AE<O then current < next
if f(next) < f(best) then best «— next
else
choose a random number runiformly from [0.1]
if /< e-2¥/Tthen current < next

end while
lower the temperature 7
end while
Return best

s3]

Simulated Annealing

exp(deltaE/T)
——T=50 =10

—T=100

Y

06

04

02
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Simulated Annealing
Simulated Annealing
T is usually decremented with a formula where T, ,;=T;*const
where const in most applications is close to 0.95 ‘ (T wih T staring fom 10 ‘
For Euclidean instances initial temperature is usually L D;
based on [Bonomi and Lutton, 1984] Jn T
08
Johnson proposes 15eL that allows an initial acceptance :;
rate of about 50%  Vn o
Temperature length (steps from one temperature to the ::
next) is usually computed by o*NN_list_length with o 02
varying from 1 to 100 o1 .
0 —
For TSP applications the neighborhood is usually given by a 135 7 9 111315 17 19 21 23 25 27 20 31 33 35 7 39
random 2-0pt move Iterations with T=0.9*T
1as) L |
Simulated Annealing Tabu Search [Glover, 1989]

- L — -
Random Euclidean Instances -‘

| Average Percen Time in Seconds Like simulated annealing moves from one solution to the

0| neighborhood but avoiding inverse transformation that

) g ) : - ;
" 7 40| 1240 500 1000 would bring us in previous solutions

[ Variant >> g 10° %
- ]

SA (Bascline Anncaling) o=l
SA.+I”run!ug a=1 27 2 38 3.20 18.00 g100)
SA, + Pruning a=10 | 17 19 22| 3200 15500 75800 | A deterministic method first introduced by Glover (1986)
\.A:[Hunlng +LowTemp) a=10 | 16 18 20 | 1430 50.30 229.00 |
| 8A; =40 13 15 17 5800 20400 BOS 00 | i i
SA; - @=100 | 11 13 16| 14100 65500 193000 TS explicitly uses the history of the search, both to escape
2-Opt 4s 48 49| oo 009 0 d from local minima and to implement an explorative strategy
| Best of 1000 2-Opas 19 28 36 | 6,60 1620 5200
| Best of 10000 2-Opts I 17 26 34 6600 161.00 51700 . H H 1 i
3-Opt | 25 25 31| 04 on 041 TS is an extended LS since it can continue the exploration
Best of 1000 3-Opts 1.0 13 21 11.30 33.00 104 | i i i
| Bestod 10000 > | e oo : g INU;:;] after a local optimal solution is found
I.in-Kernigh:ml 1.5 () 20 ] 0.06 020 077 . .
[ Bestof I0LKs _ | 09 10 14| 410 1450 4800 The Tabu List (TL) is a short-term memory to escape from
'__ local Optima
D.S. Johnson and L.A. McGeoch, 1997. 17 |
Tabu Search
Tabu Search
A tabu-list TL with th‘_% recent moves 1S maintained. The TL restricts the neighbourhood of the current
Tabu moves are forbidden for a certain number of solution
steps Allowed(x) = N(x)\TabuList
We choose the best allowed move The Tabu List:
a FIFO list
[eews] store information about the latest solutions of the
x « GenerateImitialSolution( ) eXpi;):at:conbt-LaJtﬁCtor); ti f soluti il
Tabulist — & €—=cmeeml 7| kaeps memory of the used to forbid the selection of solutions recently
while termination conditions not met _ | recent search history visited (cycling)
x & ChooseBestORN(x)\ TabuList ) &
. oy fae
Lpdﬁ_t?_(mb”ﬂ”’) ———, .| The next solution may not Xty =
endwhile improve the current one next’
current solution previous
current solution
1a9) 130]




Tabu Search
BTSvsLS

Local Search

_Local optimal solution Next improved
il - solytion
\ Nessring?,
*_solution

__ Solution Space

| M)
Tabu Search',

“Starkng .
. solution Forbidden / Ve
N (in the TL) g
. -

- _Bolution Space X o
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Tabu Search
The TL restricts the neighbourhood of the current solution

TL prevents from returning to recently visited solutions
(cycling)

TL forces the search to accept even uphill moves

The tabu tenure controls the memory of the search process:
Small — the search concentrates on small areas of the
search space
Large — the search process is forced to explore larger
regions

The tabu tenure can be fixed or varied during the search

2]

Tabu Search

« Storing complete solutions in the TL is highly inefficient
« TL usually stores solution attributes :
esolution components
*moves
«differences between two solutions
« A single or more attributes — a single or more TLs
* The set of TLs define the tabu conditions filtering N(x)

« Aspiration criteria: allow promising solutions that are
forbidden
*Best Objective criterion

i3]

Tabu Search

An example: minimum spanning tree with additional
constraints (NP hard) (Glover and Laguna, 1997)

, TS madel
20, : .30 = N(x) is defined by edge exchange moves
= TL:the inserted edge
@,,,19,@5 ,,,,, @ * Tabutenure =2
*  Aspiration criterion: Best Objective

Penalty for a single consiraint violation= 30

Constraints 1: Link AD can be included only if link DE also is included. (penalty:100)
Constraints 2: At most one of the three links — AD, CD, and AB — can be included.
(Penalty of 100 if selected two of the three, 200 if all three are selected.)

Example

= Minimum spanning tree problem with constraints.
= Objective: Connects all nodes with minimum costs

An optimal solution without

l considering constraints

Example

Iteration 1 ) ) Add | Delete Cost

Cost=50+200 (constraint penalties) BE & 75+200=275
BE AC | 70+200=270
BE AB | 60+100=160
cD AD | 60+100=160
D AC | 65+300=365
DE CE | 85+100=185
DE AC | 80+100=180
DE AD 75+0=75

New cost = 75 (iteration 2)
( local optimum)

Constraints 1: Link AD can be included only if link DE also is included. (penalty:100)
Constraints 2: At most one of the three links — AD, CD, and AB — can be included.
(Penalty of 100 if selected two of the three, 200 if all three are selected.)

Constraints 1: Link AD can be included only if link DE also is included. (penalty:100)
Constraints 2: At most one of the three links — AD, CD, and AB — can be included.
(Penalty of 100 if selected two of the three, 200 if all three are selected.)

iss|
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Tabu list: DE Add Delete Cost

Iteration 2 Cost=75 AD DE* Tabu move
AD CE 85+100=185
AD AC 80+100=180
BE CE 100+0=100
BE AC 95+0=95
BE AB 85+0=85
D DE* | 60+100=160
D CE 95+100=195

* A tabu move will be considered only if it would
result in a better solution than the best trial
solution found previously (Aspiration Condition)

Iteration 3 new cost = 85 Escape local optimum

Example
Tabu list: DE & BE Add Delete Cost
Iteration 3 Cost=85 AB BE* Tabu move
AB CE 100+0=100
AB AC 95+0=95
AD DE* 60+100=160
AD CE 95+0=95
AD AC 90+0=90
cD DE* 70+0=70
157 /40’FT abu D CE 105+0=105

Delete * A tabu move will be considered only if it would
result in a better solution than the best trial
solution found previously (Aspiration Condition)

Iteration 4 new cost = 70 Override tabu status

Constraints 1: Link AD can be included only if link DE also is included. (penalty:100)
Constraints 2: At most one of the three links — AD, CD, and AB — can be included.
(Penalty of 100 if selected two of the three, 200 if all three are selected.)

Constraints 1: Link AD can be included only if link DE also is included. (penalty:100)
Constraints 2: At most one of the three links — AD, CD, and AB — can be included.
(Penalty of 100 if selected two of the three, 200 if all three are selected.)

157,

1]

Example

Optimal Solution

Cost = 70

Additional iterations only find
inferior solutions

159]

Tabu Search

Candidate List Strategies (CLS):
Used to heuristically restrict the N(x) dimension to the subset
of most promising solutions (e.g., execute the moves that
should produce the greater improvements)

Long-Term Memory (LTM) can be used for :
Storing elite complete solutions: quality solutions whose
improvement require a great number of iterations
Storing solution attributes frequent appeared during the
search

TS may include two mechanisms based on LTM:
Intensification: a thorough LS is finally executed starting
from elite solutions (especially if CLS are used)
Diversification: it forces the search to abandon the already
visited regions of the solution space after a fixed number of
iteration without any improvements (non-improving iterations)

1s0]

Tabu Search
Step 1.
k=1, Nstep= 0, Create an initial solution S,; S, = S,

Step 2.
At step k select the best { S_eNeighborhood(S,):
notViolateTabuConditions or SadisfyAspirationCriteria}
If F(S,) < F(Spest) then Sy = S., Nstep = 0, go to Step 3 (aspiration criteria)
Nstep= Nstep + 1
If the move S, — S, is not forbidden
then Sy, =S,
insert the inverted move in the tabu list
remove the last tabu move from the tabu-llist
If F(S;) < F(Spest) then Speq =S, Nstep =0
If Nstep > MaxNonlmprovinglteration then Diversification()
Go to Step 3.

Step 3. The endpoints involved in a 2-opt (avoid a move that
k=k+1; uses one of them)

If stopping condition = true then STOP

else go to Step 2 161

Tabu search

Tabu moves
Usually 2-opt moves
Example of tabu list

The two removed edges in a 2-opt (avoid to insert
them again)

The shortest edge involved in a 2-opt (avoid a move
that involves this edge)

]
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How to go beyand LocalSearch?
Random Restart

Iteratively random generate solution s independently

Apply local search to s obtaining s*

practically not very effective

for large instances leads to costs with
« fixed percentage excess above optimum
« distribution becomes arbitrarily peaked around
the mean in the instance size limit

|

Random restart policy for TSP

The main idea is to use a local improvement algorithm
such as 2-opt, 3-opt or LK and to iteratively restart the
search for different random starting points until a local
optimum is reached

The performance gain is usually not so good due to the
limited capability of each run to increase the starting
solution

For instance 100 runs of 2-opt on a 100-city random
geometric instance will be typically better than an
average 3-opt

For 1000-city instance the best 100 runs of 2-opt is
typically worse than the worst 100 runs of 3-opt

Iterated local search

How to improve the search?

Iterated local search (ILS) is an MH method that
generates a sequence of solutions generated by an
embedded heuristic, leading to far better results than
if one were to use repeated random trials of that
heuristic.

simple principle

easy to implement
state-of-the-art results
long history

5]

Iterated local search: notation
S: set of (candidate) solutions
s: solution in S
f: cost function
f(s): cost function value of solution
s*: locally optimal solution
S*: set of locally optimal solutions

LocalSearch defines mapping from S — S*

1ss]

Iterated local search

The ideas is to search in S*

LocalSearch leads from a large space S to a smaller
space S*

define a biased walk in S*
given a solution s* perturb it s* > s’
apply LocalSearch: s" — s*’

apply acceptance test: s*, s — s* .,

Iterated local search

perturbation

cost

solution space S

sss]
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Iterated local search
Procedure lteratedLocalSearch

s=Random generate a solution
s*= LocalSearch(s)

Loop until a terminal condition is met
s’ = Perturbation (s*, history)
s*'= LocalSearch(s")
s* = AcceptanceCriterion (s*, s*’, history)

End Loop

150

Iterated local search
Performance depends on interaction among all modules
basic version of ILS

GeneratelnitialSolution: random or construction heuristic
LocalSearch: often readily available

Perturbation: random move in higher order neighborhood
AcceptanceCriterion: force cost to decrease

basic version often leads to very good performance
basic version only requires few lines of additional code
state-of-the-art results with further optimizations

Iterated local search for TSP

GeneratelnitialSolution: greedy heuristic
LocalSearch: 2-opt, 3-opt, LK, (whatever available)
Perturbation: double-bridge move (a 4-opt move)
Double bridge for its non-sequential nature can not be

easily reverted by 3-opt or lin-kernighan

AcceptanceCriterion: accept s* only if f(s*")<f(s*)

Iterated local search

Perturbation used by Martin, Otto, Felten, 1991
is called double-bridge a 4-opt move.

b a b a

ILS is a modular approach

Optimization of individual modules
complexity can be added step-by-step
different implementation possibilities
Optimize single modules without considering
interactions among modules

— local optimization of ILS

global optimization of ILS has to take into account
interactions among components

ILS Initial Solution

determines starting point s,* of walk in S*
random vs. greedy initial solution
greedy initial solutions appear to be better

for long runs dependence on sy* should be very low
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ILS Initial Solution

3880

Greedy start

3860
3840
3820
3800
3780
3760
3740

3720

1 10 100 1000 10000
CPU time [sec]

ILS Perturbation

Important: strength of perturbation
too strong: close to random restart
too weak: LocalSearch may undo perturbation

strength of perturbation may vary at run-time
perturbation should be complementary to LocalSearch

Adaptive perturbations
single perturbation size not necessarily optimal
perturbation size may vary at run-time
basic Variable Neighborhood Search
perturbation size may be adapted at run-time
reactive search

Iterated local search for TSP

Results were quite promising (with a 3-opt local search
with don’t look bits).

The 1in318 problem was solved in an hour on a
SparcStation 1 (4-6 minutes on a SGI Challenge)

For the att532 it could get within 0.07% from the optimal
in 15 hours

Johnson reports finding optimal solution for [in318,
pcb442, att532, gr666, pr1002 and pr2392 with a lin-
kernighan local search

The idea to hybridize meta-heuristics with local search is
currently one of the most effective idea to solve TSPs.

Comparison for TSP

Table 5: Library instances: Comparizon of local search heuristics

Problem 1 (] Mlarkoy
Ll L-Ix Ll
linii 1= 144 .35 1.2
atthiiy 141 1.2 1.1
- .28 R
Ih. 1 142

dize. 4-Change in acent mode).

Markov: Large-Step Markov chains [Martin et al. T2

Variable Neighborhood Search (VNS)

Proposed by Hansen and Mladenovc (1999, 2001)

Variable Neighborhood Search is an MH method that is
based on the systematic change of the neighborhood
during the search.

central observations

a local minimum w.r.t. one neighborhood structure is not
necessarily locally minimal w.r.t. another neighborhood
structure a global optimum is locally optimal w.r.t. all
neighborhood structures

179)

Variable Neighborhood Search

principle: change the neighborhood during the search

several adaptations of this central principle
+ variable neighborhood descent
» basic variable neighborhood search
» reduced variable neighborhood search
» variable neighborhood decomposition search

notation

Ny, k=1, ...k

- Ymax

is a set of neighborhood structures

N, (s) is the set of solutions in the k-th neighborhood of s

1s0]
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Population Based Heuristics

Common characteristics:
At every iteration search process considers a set (a
population) of solutions instead of a single one

The performance of the algorithms depends on the
way the solution population is manipulated

Take inspiration from natural phenomena

Three approaches:
Evolutionary Computation (Genetic Algorithms)
Ant Colony Optimization
Particle Swarm Optimization

181

Genetic Algorithms
They are based on the Darwin theory of evolution

Individuals that better fit with the
environment have more chance to survive

Auto-organization as in the biological systems
Evolution as natural selection mechanism

Populations of individuals move from one generation to
the next.

|

Genetic Algorithms

Individual reproduction capabilities are “proportional” to
their ability to fit with the environment

Reproduction allows the best individual to generate
children similar to them

Generation after generation the population always fit better
with the environment

The environment is the objective function (fitness) to
optimize, and the individuals are a population of solutions.

s3]

Genetic Algorithms
Introduced by Holland (1960) at UNI Michigan

It is a parallel search in the solution space, where the search
is driven by past experiences

Components

individual is described by his chromosome.
chromosome is defined by a set (sequence) of genes.
population is a set of individuals.

generations are defined by a sequence of different
populations

Individuals are evaluated using a fitness function (to be
optimized) that is their adaptation to the environment

Genetic Algorithms

Procedure GA
begin
t«0
initialize population P(t) with m individuals
evaluate population P(t)
while termination condition is not met
begin
select parents from P(t)
generates new individuals using reproduction rules
some individuals die in P(t)
form a new population P(t+1)
evaluate population P(t+1)
te t+1
end
return the best individual
end

iss]

Reproduction

Reproduction. it takes inspiration form Darwin natural
selection process

Individuals with higher fitness have higher probability to
reproduce.

String x is the binary code of a number. Fitness(x) = x2

No. String Fitness. % of Towl
1 01101 169 144
2 11000 576 492
3 01000 &4 55
4 10011 361 309
Total 1nm 100.0

1ss]




Genetic Algorithms

From 2 parents 2 children are generated following a
crossover operator

Afather =011 | 1000
Amother=001 | 0110

Achildl =077 10110
Achild2 =001 | 7000

To each child a random mutation process is applied
to modify some of the gene components

Al =01170110
Al =0100110

187,

TABLE 1.2 A Geneic Algorithm by Hand

Tovitial : el
Population *Valoe ot Expected Couny
§ eCt, COunL
::mz ( gandvmty) ( Unsigned|  gx) L £ m‘f‘:f,: .
. Generated Integer = 73 7 u:..-lll
A toceger | \ Whee
— —_— T
! ? 1101 13 169 014 0.58 1
: B ; ggg 24 576 049 197 2
3 tloaoe 1;: 6 006 022 o
: 1 W W am 123 1
m BT a0
m 17 .06 Rt |
M\-:..;.r 293 02% 100 :LL:
S"Q D49 197 20
Mating Pool after Mate Crassaver Site
{Cross Sity Stow ("' ‘ IJ} Seced pui i =
_'.;L'ﬂ“u"‘“‘ Sefected Population Value xt
?iég}‘; b 4 01100 iz 144
%S 1 4 11001 25 625
[ 4 z 11011 27 729
10(011 3 2 10000

16 256
1754
439
729
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GA Parameters

Number of individuals: Usually is a compromise between
search space coverage and the need to escape from local
minimum. A good starting number is 100.

Crossover Probability (defined for each couple of
individuals): define the crossover probability. Parents have
also the possibility to reproduce without combining their
chromosome. This parameter is crucial to guarantee the
search space coverage and that new individuals are
generated. A good value is 0.5

Mutation Probability (defined for each gene). Usually 0.005

1s9]

GA Parameters

Generation Gap. percentage of individuals replaced
between one generation and the next. In case is 100% all
the children substitute the parents. In case is lower (e.g.
80%) we keep the best 20% of the parents and the best
80% of the children. Value close to 100% are usually
used.

Selection strategy. In case of eljtist strategy (with
parameter 1) the best 7 individuals are moved
automatically to the next generation. This prevent that
the best individual are not reproduced in the next
population. Usually 7=0 or n=1.

150]

Genetic Algorithms

We define these functions

Random: generates a random number between 0 and 1
Flip: return a true Boolean value according to a probability
Rnd: return an integer randomly chosen between two
parameters lower and upper)

Fitness[j] is the fitness of individual j

v is the chromosome length

Selection (sum_fitness)
sum_tmp <« 0, j«< 0
rand « random*sum_fitness
repeat
jeij+1
sum_tmp « sum_tmp + fitness[j]
until (sum_tmp >= rand)
return (selected_individual « j)

Genetic Algorithms

Crossover (parentl, parent2)
if flip(pcross) then
pos_cross « rnd(1, v-1)
for j«1 to pos_cross
child1[j] « mutation(parent1[j])
child2[j] « mutation(parent2[j])
if pos_cross <> v then
for j < pos_cross+1 to v
child1[j] « mutation(parent2[j])
child2[j] « mutation(parent1[j])

Mutation (gene)
if flip(pmutaztone) then
return (gene mutation)
else
return (gene)

i92]
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Genetic Algorithms

Scale the fitness: in same case is needed to avoid that
fitness values are too close. Fitness values are rescaled
starting from the max and the min value.

Ranking: an alternative way to define the selection
probability. First individuals are sorted and next the
probability is given by the position in the sort. This avoid to
always select individuals with very high fitness.

Chromosome as sequence of parameters:
A = parl par2 par3 ... parn
A =000 111010 .... 001

Genetic Algorithms

Multiple Crossover

QO
O g

193]

Genetic Algorithms for TSP

An individual is a tour. Normal crossover does not work

213 ]

213 01=[2132576]
P2=[12576] :>02

=[ ]
City 2 and 4 are visited twice in the two solutions.

A possibility is to maintain absolute position for the first
part of the individual and relative position for the second
part

Pl=[2134567]

ol=[21 ]
P2=[12°74] =

02=[4321567)

55|

Genetic Algorithms for TSP

Greedy Crossover by J. Grefenstette

Gene presentation, a sequential representation where the
cities are listed in the order in which they are visited.
Example: [9340125768]

Greedy crossover selects the first city of one parent,
compares the cities leaving that city in both parents,
and chooses the closer one to extend the tour.

If one city has already appeared in the tour, we
choose the other city.

If both cities have already appeared, we randomly
select a non-selected city

156]

Genetic Algorithms

Infeasibility
Recombining individuals, the offspring might be
potentially infeasible.
Three basic strategies:
reject (simplest)
penalizing infeasible individuals in the quality function
Repair

Intensification Strategy

« Application of LS to improve the fitness of individuals. Approaches
with LS applied to every individual of a population are often called
Memetic Algorithms

¢ Linkage learning or building block learning: a strategy that uses
recombination operators to explicitly try to combine “good” parts of
individuals (rather than, e.g., a simple one-point crossover for
bitstrings)

ACO, Ant Colony Optimization

= 1018 living insects (rough estimate)
= ~2% of all insects are social
= Social insects are:

= All ants

= All termites

= Some bees

= Some wasps

= 50% of all social insects are ants
= Avg weight of one ant between 1 and 5 mg
= Tot weight ants ~ Tot weight humans

58]
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How Do Ants Coordinate their Activities?

= Ants do not directly
communicate. The basic
principle is stigmergy, a
particular kind of indirect
communication based on
environmental modification

= Stimulation of workers by the
performance they have
achieved Grassé P. P., 1959

= Foraging behavior: searching
for food by parallel exploration
of the environment

10

Shortest paths: an emerging behavior from
stigmergy

* Foraging ant colonies can synergistically find
shortest paths in distributed / dynamic
environments:

— While moving back and forth between nest and food ants
mark their path by pheromone laying

— Step-by-step routing decisions are biased by the /oca/
intensity of pheromone field (stigmergy)

— Pheromone is the colony’s collective and distributed
memory. it encodes the collectively learned quality of
local routing choices toward destination target

R. Beckers, J. L. Deneubourg and S. Goss, Trails and U-turns in the selection of the
shortest path by the ant Lasius Niger, J. of Theoretical Biology, 159, 1992

How Ants Find Food

Social insects, following simple, individual rules, accomplish complex colony
activities through: flexibility, robustness and self-organization

Ants Foraging Behavior

Pheromone Trail Following

Ants and termites follow pheromone trails

20

Asymmetric Bridge Experiment

Goss et al., 1989

Dorigo & Bertolissi, 1998




Simple Bridge Experiment

Goss et al., 1989, Deneubourg et al., 1990

% ants in upper and lover branches

B g

0 5 10 15 20 25

minutes

Ant Colony Optimization

ACO algorithms are multi-agent systems that exploit
artificial stigmergy for the solution of combinatorial
optimization problems.

- Artificial ants live in a discrete world. They construct

solutions making stochastic transition from state to
state.

- They deposit artificial pheromone to modify some

aspects of their environment (search space).
Pheromone is used to dynamically store past history
of the colony.

- Artificial Ants are sometime “augmented” with extra

capabilities like local optimization or backtracking

Search Space

Discrete Graph

To each edge is associated
a static value returned by
an heuristic function A(r,s)
based on the edge-cost

o
©
oo

>
O

<

Each edge of the graph is
augmented with a
pheromone trail {r;s)
deposited by ants.
Pheromone is dynamic and
it is learned at run-time

N
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ACO: Ant Colony Optimization

No fixed constraint about
the order of the phases of
e the algorithm

Basic ACO Algorithm

Inltmhzeph.ero?mne( ) . - Ants build the solution
while termination conditipfis not met do | with 2 random walk
ScheduleActivities w -
SimulateAntSolutionConstruction( ) Pheromane trails are
PheromoneUpdate( ) @mmssmment - updated according to the
DeamonActions( ) ... solutions’ quality
end ScheduleActivities
endwhile

(.

“+-. Optional global actions
(e.g., offline pheromone
updates, local search
steps)

Ant Colony Optimization

There are many variants of Ant Colony Optimization
algorithms.

They vary in the way solutions are constructed by artificial
ants and in the way the pheromone is updated

Main variants are
Ant Colony System (ACS), Gambardella, Dorigo, 1996
Ant System (AS), Dorigo, 1991
Max Min Ant System (MMAS),Stiitzle and Hoos (2000)

20f

ACS: Ant Colony System for TSP

Loop
Randomly position m artificial ants on n cities
For city=1ton
For ant=1tom
{Each ant builds a solution by adding one city after
the othery
Select probabilistically the next city according to
exploration and exploitation mechanism
Apply the local trail updating rule
End for
calculate the length Lm of the tour generated by ant m
End for
Apply the global trail updating rule using the best ant so far
Until End_condition

Gambardella L.M, Dorigo M., 1996

21|
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ACS state transition rule: formulae

arg max {r(r,u)]- [n(r,u)]/y } ifq<q, (Exploitation)

|
ek (r)
s= % u r
{ S otherwise (Exploration)

where

. S is a stochastic variable distributed as follows:
[ [eo1[urs] -
| if sedy(r)

(9= Z[r( ru} [r;(r,u)]ﬂ
|ueJk(r)
t is the trail

0 therwi
h is the inverse of the distancel otherwisc

J,(r) is the set of cities still to be visited by ant k positioned on city r
B and q, are parameters

211

ACS state transition rule: example

t(A,B) = 150 h (A,B) = 1/10
t(AC) =35 h(AC)=1/7
t(AD) =90 h(AD)=1/15

with probability (1-g,) exploration

AC with probability 5/11
AD with probability 6/11

212

ACS local trail updating
... Similar to evaporation

If an edge (r,s) is visited by an ant
1.9 =(1-p) dr9)+p Ad(r,9)

with At(r,s) = 1,
That is the initial value of the pheromone equal for all edges
7, <—1/nnei *ncities

Where nnei is the length of a tour computed
with a nearest neighbor heuristic

ACS's global trail updating

At the end of each iteration the best ant is allowed
to reinforce its tour by depositing additional pheromone
proportional to the length of the tour

7(r,8) <= (1-a)- 7(r,8) + - A7(r,S)g0pal

where

Ar(r,S)gjopal = [

est

Ant System: construction phase

Only exploitation in the construction phase

‘( [2(r,9)] [1r,9)F oo
P(r,s) =4 Z[T(r,u)}[r;(r,u)]ﬂ
‘ uely(r)
Lo otherwise
tis the trail

h is the inverse of the distance
Ji(r) is the set of cities still to be visited by ant k positioned on city r
B is a parameter

2|

Ant System: pheromone updating

At the end of the constructive phase all ants are
involved in updating the pheromone (In ACS only the
best ant)

Pheromone also evaporated on all edges (in ACS
evaporation is done only for visited edge during the
construction phase)

g (1=p) 7+ > AT,
k=1

{Lk if ant k used edge (i,7) in its tour,

0 otherwise,

Atk =

ij

21|
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Max Min Ant System (MMAS)

MMAS differs from AS in that

(i) Asin ACS only the best ant adds pheromone
trails,

(ii) No local pheromone updating

(iii) the minimum and maximum values of the
pheromone are explicitly limited
(in AS and ACS these values are limited
implicitly, that is, the value of the limits is a result
of the algorithm working rather than a value set
explicitly by the algorithm designer).

217

TSP problem

[ e ok WD ke ]
| = ) ) el e ) e o) | | ) ) ) e ] ) ) (] )

ACS comparison with other
heuristics on random TSPs

Frodemrame | AGS A BN e
(verap) | (averap) | (avera) | (avera)

Qty set 1 5.88 5.88 598 6.06

Qty set 2 605 6.01 603 625

Qtyset 3 5.58 565 570 583

Qty set 4 5.74 581 586 5.87

Qty set 5 6.18 633 649 6.70

Comparisons on average (25 trials) tour length
obtained on five random 50-city symmetric TSP

Comparison of ACS with other natural
algorithms on geometric TSPs

Protiem name ACS A EP SA Qptimum
EI50 425 428 426 443 425
(50-city problem) | (427.96) (NA) (427.86) (NA) (NA)
[1,830] [25,000] | [100,000] | [68,512]
EI75 535 545 542 580 535
(75-city prodlem) | (542.37) (NA) (549.18) (NA) (NA)
[3,480] [80,000] | [325,000] | [173,250]
KroA100 21,282 21,761 NA NA 21,282
(100-city problem) | (21,285.44) [ (N'A) (NA) (NA) (NA)
[4,820] [103,000] [NA] INA]

Best integer tour length, best real tour length (in parentheses) and number of tours
required to find the best integer tour length (in square brackets)
Optimal length is available only for integer tour lengths ACS results on 25 trials

210] 2]
ACS on some geometric TSP Hvbrid ACS: ACS plus | | h
: ri . r
problems in TSPLIB y plus local searc
Problem name ACS ACS ACS Standard | Cptimum | Relativeerror| CPUsecto
best integer | number of | average | deviation| (2) ) 9‘“’5“:5 LOOp
length tours integer me tour . .
M |sss ol agn @ Randomly position m agents on n cities
d198 15,888 585,000 16,054 7 15,780 0.68 % 0.02 For Step=1 to n
(198-city prodiem) For ant=1 to m
pebt42 51,268 | 595000 | 51690 | 188 | 50,79 | 0.96% 005 Apply the state transition rule
(aaz-cty proem) Apply the local trail updating rule
(5327:1‘1;5;20“%’ 28,147 830,658 28,523 275 27,686 167 % 0.07 Apply Iocal Search ) ]
rat783 9,015 991,276 9,066 28 8,806 237% 0.13 A_pply the glo_t_)al trall updatlng rUIe
(783-city prtiem) Until End_condition
11577 22,977 942,000 23,163 116 [22,204 | 3.27+3.48 % 0.48
(1577-city problem) 22,249]
Integer length of the shortest tour found, number of tours to find it, avg
integer length (over 15 trials), its std dev, optimal solution, and the
relative error of ACS
221 ZE'
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ACS-3-opt applied to TSP

Frtemname | ACS3-t | ACS3-ot | ACS3-ct | ACS3-qt | Qtimm | %Erar
best resut | bestresdt | averae | average [#)] -2
(lengh) (se0) (lengh) (se0) (2)
O]
a1%8 15,780 16 15,7817 | 238 | 15780 | 0.01%
(198-city pratlem)
lirB18" 42,029 101 2,09 | 587 | 42029 | 000%
(3168-dity protlem)
ass2 27,683 133 | 27,7182 | 810 | 2768 | 0.1%
(532-dity problem)
ra783 8,818 1317 | 88379 | 1280 | 8806 | 036%
(783-city protlem)

Results obtained by ACS-3-opt on TSP problems taken from the First
International Contest on Evolutionary Optimization, IEEE-EC 96, May 20-
22, 1996, Nagoya, Japan

Comparison of ACS-3-opt and GA+local
search on TSPs

Fretlemrame | ACS3-t| ACS3-t | ACS3-ct | STSR.GA | STSR.GA | STSRGA | Gimm
aeap | aeap | %era | aeap | aeap | %era @
(length) (seo) -G) | (length) (sec) (2r(3)
[} 3) &) @)
198 157817 | 238 | 001% | 15780 | 253 000% | 15780
(198-city protiem)
fir318 42,02 | 537 | 000% | 42029 | 2084 | 000% | 42029
(318-city protlem)
ass2 27,7182 810 | 011% | 27687| 11780 | 003% | 27,686
(532-city prblem)
ra7es 88379 | 1280 | 036% | 8873 | 21,210 | 001% | 8806
(783-ity protiem)

Results obtained by ACS-3-opt and by STSP-GA on ATSP problems taken
from the First International Contest on Evolutionary Optimization, IEEE-EC
96, May 20-22, 1996, Nagoya, Japan

23] 224,
. Comparison of ACS-3-opt and GA
ACS-3-opt applied to ATSP
GA+local search on ATSPs
Problemname | ACS-3-opt | ACS-3-opt | ACS-3-opt | ACS-3-opt| Optimum | % Error Problem name | ACS-3-0pt| ACS-3-opt | ACS-3-opt| ATSP-GA | ATSP-GA | ATSP-GA
best result | best resut | average | average () (1)-(2) average | average | %error | average | average | %error
(length) (sec) (length) (sec) (2' (length) (sec) (1-3) (length) (sec) (2)-(3)
) [0 2N @ | T
43 (3) 3)
2,810 1 2,810 2 2,810 | 0.00%
(43-city problem) 3 2,810 2 000% | 2,810 10 0.00 %
ry4gp 14,422 2 14,422 19 14,422 | 0.00 % (43-city proiem)
(48-city problem) ry48p 14,422 19 0.00% | 14,440 30 0.12%
ft70 38,673 3 38,679.8 6 38,673 | 0.02% (48-city protiem)
(70-city problem) ft70 38,679.8 6 0.02% | 38,6838 639 0.03 %
krot24p 36,230 3 36,230 25 36,230 | 0.00% {70-city protiem)
(100-city problem) kro124p 36,230 25 0.00% | 36,2353 115 0.01%
ftv170° 2,755 17 2,755 68 2,755 | 0.00% (100-city protlem)
(170-city problem) ftv17o 2,755 68 0.00% | 2,766.1 211 0.40 %
(170-city problem)
Results obtained by ACS-3-opt on ATSP problems taken from the First Results obtained by ACS-3-opt and by ATSP-GA on ATSP problems taken
International Contest on Evolutionary Optimization, IEEE-EC 96, May 20- from the First International Contest on Evolutionary Optimization, IEEE-
22, 1996, Nagoya, Japan EC 96, May 20-22, 1996, Nagoya, Japan
=l 2]

Pheromone trail and heuristic function:
are they useful?

460

455 —— ACs standard
—__ ACS no heuristic
450
— ACS no pheromone

445

4404

435

430

45—

Normalized Average length of the best tour

10 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Problem size

Effectiveness of distributed
pheromone learning

525 Test problem: CCAO

—— pheromone

—— No pheromone

100 200 300 400 500 600 700 800
Cpu Time (msec)

Best tour length as a function of elapsed CPU time (avg on 100 runs)

22|
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ACS vs Probabilistic Nearest Neighborhood

ACS - Average on 15 trials - 1250 iterations per trial
PROBABILISTIC NEAREST NEIGHBOR (Q0=0....1.0)

T155 mno Pheromone
© 145 Ewith Pheromone
U135

0 0.1 0.3 0.5 0.7 0.9 1
Durbin city1

2]

Sequential Ordering Problem

It consists of finding @ minimum weight Hamiltonian path on a directed
graph subject to multiple precedence constraints among nodes.

SOP models real-world problems like production planning, single-vehicle
pick-up and delivery and transportation problems

20|

Sequential Ordering Problem

Find the minimal sequence from node Start to node End that visits all
the nodes and do not violate precedence constraints (in red)

Start O /@\ \O End

/r’ <
=h]

O0——-=0

Sequential Ordering Problem

= Escudero (1988)
= General ATSP Problem

= Precedence Constrained ATSP Polytope (Balas,
Fischetti, Pulleyblank, 1995).

= Branch and Cut (Ascheuer, 1996)

= Maximum Partial Order/Arbitrary Insertion GA
(Chen and Smith, 1996)

= HAS-SOP: ACO based algorithm (Gambardella L.M,
Dorigo M., 2000)

= Pick-Up and Delivery

= Lexicographic search with labeling Procedure
(Savelsbergh, 1990).

Sequence-based crossover operators

Partially Mapped Crossover (PMX) [Goldberg and R.
Lingle., 1985] has the form of two-point crossover.

L]

- -
wig
™

Offepring: ibkdle jlaeh 3

2 Example of PMX. The mappings are c-e, b-£, and -3

The offspring takes the cities from Parent 2 between the cut-points, and it takes
the cities in the first and last sections from Parent 1. However, if a city in these
outer sections has already been taken from Parent 2, its “mapped” city is taken
instead. The mappings are defined between the cut-points--the city of Parent 2 is
mapped to the corresponding city of Parent 1.

22

Sequence-based crossover operators

Order Crossover (OX) [Davis 85] has the form of
two-point crossover.

Parent 1 ib e fglachi3
Parent hgalebil|liedt6€
cbjlasehsd

ibkbdlefg
ffspring & g| etk a id

The offspring starts by taking the cities of Parent 2 between the cut-points. Then,
starting from the second cut-point, the offspring takes the cities of Parent 1
(“wrapping around” from the last segment to the first segment). When a city that
has been taken from Parent 2 is encountered, it is skipped--the remaining cities
are appended in the order they have in Parent 1.
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Sequence-based crossover operators

Example of PMX. The mappings s c-8, b-t, and 1-g

Comparison between PMX and OX. OX can be less disruptive
to sub-tours. For example, the sub-tour e-f-g in Parent 1 is
now transmitted to the offspring. However, the common sub-
tour g-a-c is (still) disrupted.

Sequence-based crossover operators

Maximal Sub-Tour (MST)--the longest (undirected) sub-tour
that is common to both parents. Thus, OX is modified to
preserve the MST.

ilbkd fgalehi
hlgaebiji d f
gaecehijil|leaha&
|k d f =
Offspring: flgaebiji|hd
T Example of MST-OX. The Maximal Sub-Tour g-a-c is now preserved

Scanning both parents to identify the Maximal Sub-Tour, the first cut-point
occurs to the immediate left of the MST in Parent 2. The second cut-point is
then made a random distance to the right of the MST1. After OX is applied

25 225
Sequence-based crossover operators Sequence-based crossover operators
The longest common partial order is the Maximum Partial ’ -
Order (MPO). Using Arbitrary Insertion to complete this Maximum Partial Order (MPO).
partial solution, the overall process defines the Maximum
Partial Order/Arbltrary Insertion heuristic operator. - Convert parent sequences to Boolean maltrices
1 - Intersect matrices
IR e - Sum columns k zach city's predecessors
T\;/,__H/ I \\ = T - Build partial order graph
| d \ " | - Find city with fewest number of predecessors
— =, '_/,:_ﬂ——dv’ \ - Attach city to the predecessor with the most
I azent 7 avddered predecessors
. - T - Find longest path in graph
———a .
| * " . | T\'v”.. -.- ,-'II
| - -l j - /i I 3: Psendo-code to find the Maximum Partial Order of two parent sequences.
— " — '
Convex Hull PO |
Maximum Partial Order (MPO).
237 22'
Sequence-based crossover operators MPO/AI performance
Maximum Partial Order (MPO).
Aug, Bes
; i I |.rr\S|T|-\:—E: ¢ "S"‘?r’: :G‘EE""" k(dp\:_;:'n?iitm
d198 +3.05% + 124 %
lin318 « 5,04 % +1.75%
17 +1.91% + 058 %
pcba42 +8.97 % +3.48 %
us74 +B.A5% + 250 %
Average +568% +1,93%
Gty g o v ol o tho dee T o - oo attached Is the Common Good? A New Perspective Developed in
Ity g IS precedet y all O € CIties In the graph, but It can only be attached to ; ;. ;
cities ¢ and f because those cities have the most ordered predecessors (2). Genetic Algonthms’ PHD TheSIS’ Stephen Chen’ 1999
2] 200]

40



MPO/AI for SOP

HAS-SOP: Hybrid Ant System for SOP

Dorigo, Gambardella 2000
Constructive phase based on ACS
Trail updating as ACS

New local search SOP-3_exchange strategy based
on a combination between lexicographic search
and a new labeling procedure.

New data structure to drive the search

First in literature that uses a local search edge-
exchange strategy to directly handle multiple
constraints without any increase in computational
time.

2]

Ants for SOP

Each ant iteratively starts from node 0 and adds
new nodes until all nodes have been visited and
node nis reached.

When in node j an ant chooses probabilistically
the next node jfrom the set A) of feasible nodes.

(/) contains all the nodes Jstill to be visited and
such that all nodes that have to precede j
according to precedence constraints, have already
been inserted in the sequence

25|

Feasable Ant Sets

/’® @ m End
O i /®\'®
@ : m End

Local Search

A 2-exchange always inverts a path.

|

Local Search

A 3-exchange without (b) and with (c) path
inversion

2|
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SOP-3-Exchange

It exchanges 2 sequences. The procedure follows a
lexicographic search and it is able to check in constant time if
a precedence constraint is violated

SOP-3-Exchange: lexicographic search

path_left and path_right are_initially composed of
only one element i=ht1 and j=i+1

j walks through the sequence until a
precedence constraint is violated

path_left=(i) and path_right=(i+1.... j)

W
path-left J path-right I dodent .
i walksthrough the sequence unil node -1 is e
0 h ‘[h‘rl | i i+ . P path_left=(h+1,...) and path_right=(j)
n n
" a
path-right path-left " pethieht ot
- : Y vy
0 h 1 oo n
b
247 Zﬂ'
SOP-3-Exchange Labeling procedure SOP-3-Exchange Labeling procedure
. . When path_rightis expanded moving jin </+2, ..., m if £ mark(j)
We start by fixing #, /=h+1, and path_left=(J). =count_h we stop the search because the label indicates that j must
for all nodes s O successor /] we set £ mark(s)=count_h. follow a node in path_left.
We repeat this operation each time pat/_left is expanded with a new At this point, if no other search-termination condition is met, the
_node /. The labeling procedure marks with the value counf‘_h all the nodes procedure restarts expanding again path._feft. In this situation all the
in the sequence that must follow one of the nodes belonging to path_left previous defined labels remain valid and the search continues by labeling
all the successors of the new node /.
T parh_icgh and pavh_right ars initially composed of caly o o g e e sl e
H_I— 1 1 r——T " [ Comraiat s viokiaed oo
1t [ 1+ o ot} s poth_righitl . )
N L | Lo a A h T n
- b
. | T  walks throwgh the sequence wntil a precedesce
" 4’_1 1 F e T m i walks theoungh the sequence ustil sose -1 i reached
JR——| X . i " - T path_lefbive iy ared pash_right={j)
P N - »
200f 250f

SOP-3-Exchange Labeling procedure

When we move /A forward into the sequence we invalidate
all previously set labels by setting count_h=count_h+1.

th_left it phit
path_left pathright
¥ h i Yy "

3
[l h Il i isfl Jj J+l "

Selection of node h with the Don’t Push Stack

U—m
[ Tw [ 4 #on

Tentative Push

POP: select h as candidate node h
1 —K— hel
j — i+l
h
i+l — J
i i
. ; < i
s s !
htl ——— s
j*+1 j*+1
ho— j+1
m m
m

22|




Local search contribution
Sequential Ordering Problems
RND MPO/AI ACS-SOP RND+LS MPO/AI+LS HAS-SOP
prob.100 1440.17% 134.66% 40.62% 50.07% 47.58% 17.46% -
5% | "
rbgl09a 64.57% 0.33% 1.93% 0.08% 0.06% 0.00% \“'-.__ .,
., i -
rbg150a 37.85% 0.19% 2.54% 0.08% 0.13% 0.00% gAW . .
g T ...
tbg174a 40.86% 0.01% 2.16% 0.15% 0.00% 0.08% iw& e aﬁ;—’;g’;
rbg253a 45.85% 0.03% 2.68% 0.21% 0.00% 0.00% E D ""':HP‘-V_“*\: s
AlslLS
B 0% | . dl
rbg323a 80.14% 1.08% 9.60% 127% 0.08% 0.21% ‘g o wo- RNDHS
rbg341a 125.46% 302% |  12.64% 441% 0.96% 1.54% w5 | _
rbg358a 151.92% 7.83% 20.20% 4.98% 2.51% 1.37% o
o ¢ - —
1bg378a 131.58% 595% |  22.02% 417% 1.40% 0.88% RESEEEZ3ESEEEEEEZZFES
avg 235.38% 17.01% 12.71% 7.27% 5.86% 2.39% seconds
Zﬁl 254
HAS_SOP TSPLIB NEW NEW HAS-SOP  Avg Std.Dev. Avg
PROB Bounds Lower Upper All Best Result Time
Bounds  Bounds (sec)
ESC63.s0p 62 62 620 0 0.1
ESC78.s0p 18230 18230 18230.0 0 6.9
TSPLB MPOAl MPOAI MPOAl HASSOP HASSOP HASSOP 53.1.50p [74387570] 781 7581 75310 0 99
PROB Bounds Best A\/g Time Best AVg Time ft53.2.s0p [7630,8335] 8026 8026 8026.0 0 184
(sec) (sec) t53.3.s0p [9473,10935] 10262 10262 10262.0 0 29
t53.4.s0p 14425 14425 144250 0 04
ft70.1.s0p 30313 39545 39615 120 30313 393130 208 170150 2031 20313 393130 o 28
ft70.2.s0p [3973040422] 40422 40435 120 40419 404335 114.1 70.2.50p [39730,40422] 39803 40419 40419 404335 246 1141
#70.3:50p [4130542535] 42535 42558 120 42535 425350 44 70.3.50p [4130542535] 41305 42535 425350 0 644
- g g g 70.4.50p [52269,53562] 53072 53530 53530 53566.5 76 382
ft70.4.50p [52269,53562] 53562 53583 120 53530  53566.5 382 ko124p.i.sop  [37722,40186] 37761 39420 39420 394200 0 1152
kro124p.1.sop [3772240186] 40186 40996 240 3420 394200 1152 kro124p.2.sop  [38534,41677] 38719 41336 41336 41336.0 0 1193
kro124p.3.sop  [40967,50876] 41578 49499 49499 49648.8 2497 2628
ko124p2sop  [38534,41677] 41667 42576 240 41336 413360 1193 s el proxeisngs 7 e
kro124p.3.sop  [40967,50876] 50876 51085 240 49499 496488 262.8 prob.100.sop  [1024,1385] 1027 1190 1190 13024 394 19187
ko124p.4sop  [64858,76103] 76103 76103 240 76103 761030 574 motlasep 1058 0% 1030 o s
hgdasop  [31363157] 3157 3161 2760 3141 31460 16855 pdbrspeiibeiiiel POy oo
rbg341a.sop [25432597) 2597 2603 3840 2580 25919 21496 tbg253asop  [2928.2987) 2040 2050 2050 29500 0 815
1bg358a.s0p [25182599) 2599 2636 6120 2555 25612 21693 rbg323asop  [31363157) 3137 3141 3141 31460 14 16855
rbg341a.sop [2543,2597] 2543 2574 2574 25919 1.8 21496
Tbg378a.s0p [27612833) 2833 2843 8820 2817 28343 26403 rbg358asop  [2518,2509) 2529 2545 2545 25612 52 21693
rbg378a.sop [2761,2833] 2817 2817 2817 28343 10.7 2640.3
We tested and compare our algorithms on a set of problems in TSPLIB Norbert Ascheuer (1997) has run his branch&cut SOP program starting from our best solutions. He
using a SUN Ultra SPARC 1 (167Mhz) could not improve them within 24-CPU hours on a SUN SPARC Station 4 (110Mhz) but he proves
optimality for rbg378a and computes the new reported lower bounds.
25| 2sef
Vehicle Routing Problems (VRPs) VRP- Characteristics and Components
1. VRP is a generic name given to a class of problems in which Freight transportation provided by vehicles through a
customers are visited by vehicles (first formulated by Dantzig and
] route network
Ramser in 1950)
2.The problem is to design routes for the vehicles so as to meet the .
given constraints and objectives minimising a given objective function. Main components:
¢ Road network
* Customers
° +  Vehicles b
Customer
5 . Depots
Featurgs \ « Drivers
o) « Operational constraints:
* global
«  for single routes
~. « Optimization objectives
Q
O
< 257 =l
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VRP- Characteristics and Components

The road network

A graph G=(V, A), G=(V, E) or G=(V, AU E)
Directed, undirected or mixed
Sparse vs Dense

Sparse = |A[=0(|V|)
Dense = |A|=O(|V|?)

Directed graph:
small scale road network (cities)

Undirected graph:
large scale road network (countries, regions)

250]

VRP- Characteristics and Components
The road network
Vertices

« depots, customers, road intersections
« V={0,1,...,n}

* roads
« directed (i, j)eA or undirected ecE
< length, or travel cost cijV (i, j)eA

< travel time tijV (i, j)eA

VRP- Characteristics and Components

Customers

Associated to vertex or arcs
° Requested quantity

Lo Characteristics

o P Lo e *Service time (load/unload)
. Ou . *Delivery Time Windows

o *Pick-up and delivery
*Access Limitation

*Allow to split delivery

VRP- Characteristics and Components

Fleet/Vehicles

* Fleet size (fixed or variable) :
« Company or outsourced fleet (fixed vehicle cost)

» Depot of reference (single, multiple, possibility of change)

* Vehicle capacity (maximum load allowed; weight, volume)

» Freight compatibility (perishable goods, dangerous materials
+ Compatibility with streets

* Load/unload procedure

» Costs (associated with mileage, time, fuel, journey, load)

VRP- Characteristics and Components

Drivers

« Employee workers or vehicle owners
» Union and contract conditions

»  Working periods, shifts and breaks

» Availability and possibility of overtim

Depots
« Single or multiple
*  Number and type of available vehicles
» Set of a priori assigned customers

= decomposable problems

263

VRP- Characteristics and Components

Operational constraints

Relevant to:
the nature of transport
the quality of service
the driver working contract

Two classes of constraints:
Local constraints (single route)
Global constraints (the whole set of routes)
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VRP- Characteristics and Components

Operational constraints

Local constraints (single route)
vehicle capacity
maximum allowed route distance/duration
time constraints (arrival, departure, time windows)
kind of service (pickup, delivery or both)
precedence among customers:
pickup and delivery
linehaul/backhaul

Global constraints (whole set of routes)
maximum number of vehicles
maximum number of routes (for vehicle or depot)
workload balancing
working periods and shifts (minimum time between routes)

2]

VRP- Characteristics and Components

Objectives: (multiples)

Minimize: the global transportation cost + drivers
and vehicles fixed costs

Minimize: the number of vehicles and/or drivers
Balancing of the routes

Minimize: penalties for not/partially served
customers

= Conflicting objectives

VRP- Characteristics and Components
Other characteristics

 Service split on several days

» More routes for vehicles in a day

» More requests for a customer

» Demand partially or not a priori known (dynamic, on-
line problems)

» Stochastic and/or time dependent arc costs/travel
times s

&

&0

Speed Model

Speed - Distances

» i
0-5 km => 20km/h

5-10 km => 25km/h

- 10-15 km => 30 km/h

15-20 km => 35km/h

20-30 km => 40 km/h

ol * e
v
v

30-45 km => 45km/h

2 45-65 km => 50 km/h

65-90 km => 55km/h

90 ... km => 60km/h

The General Vehicle Routing Problems

Problem formulation

Given a generic graph G=(V, Au E) determine a minimum cost set
of M cycles (routes) that serve the required vertices USV and the
required edges RSAu E satisfying a set of operational constraints

Cost of a route = the sum of the cost of the edges
belonging to the route

Applications:
collection and delivery of goods
waste collection
street cleaning
school-bus routing
dial-a-ride systems
transportation of people with handicap
routing of salespeople

20|

The General Vehicle Routing Problems

Two main classes of problems
Node Routing Problem (NRP)
Customers/demand concentrated in sites associated with
vertices
O only required vertices U, R=2
O frequently denoted as VRP or Vehicle Scheduling Problem

Arc Routing Problem (ARP)
Customers/demand evenly distributed along the edges
O only required edges R, U=2

The problems without operational constraints:

NRP reduces to Traveling Salesman Problem (TSP)

ARP reduces to Rural Chinese Postman Problem (RCPP)
ARP with R=A reduces to Chinese Postman Problem (CPP)

20|
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VRP-Node Routing Problems

It concerns the distribution/collection of goods

Main components:
Vehicles
Depots
Drivers
Road Network

Solution:
A set of routes performed by a fleet of vehicles such
that:
each route starts and ends at vehicles’ depots
the customers’ requirements are satisfied
the operational constraints are fulfilled
the global transportation cost is minimized

271

B Relationships among the basic VRP (NRP) problems

Backhauling Time windows

M vehcles

Vehicle capacity

Backhauling

VRPB

[ VRPETW ]

Route length
Time windows

Mixed service

VRPPD

VRPPDTW]

2z

VRP-Node Routing Problems

e Traveling Salesman Problem (TSP)

e Traveling Salesman Problem with Backhauls (TSPB)

e Traveling Salesman Problem with Time Windows
(TSPTW)

e Multiple Traveling Salesman Problem (MTSP)

e Capacitated Vehicle Routing Problem (CVRP)

e Distance Constrained Vehicle Routing Problem
(DCVRP)

¢ Vehicle Routing Problem with Backhauls (VRPB)

e Vehicle Routing Problem with Time Windows
(VRPTW)

e Vehicle Routing Problem with Pickup and Delivery
(VRPPD)

e

VRP-Node Routing Problems

Road graph

G=(V,A) (strongly) connected -~ G'=(V, A") complete
V ={0,1,...,n}, |V| = n+1, set of vertices

0 the depot

1,..., n customers’ locations (cities)

V(i, j)eA’ cij=0 is a positive minimum cost (distance) of
traveling from city i to city j

TSP-Traveling Salesman Problem

TSP (node routing problems without operational
constraints). A traveling salesman must visit his
customers located in different cities and come back
home

Single vehicle, Road graph G=(V, A) - G'=(V, A)
complete

V = customers’ cities and TS home (depot); |V|=n

V(i, j)eA’ cij=0 the minimum cost (distance) of traveling
from city i to city j

Solution: a minimum cost route which starts and ends at
depot and reaches each customer

Complexity: Strongly NP-hard optimization problem

b |

MTSP- Multiple Traveling Salesman

MTSP (multiple traveling salesmen)

M vehicles (no size limitation)

A single common depot

Each vehicle (salesman) must visit at least one customer
Solution: M minimum cost routes (tours) which start and

end at depot so that each customer is visited exactly
once

26
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CVRP-Capacitated VRP

¢ K identical vehicles

¢ C vehicle capacity

¢ A single common depot

VieV\{0} customer a demand di=0 is defined (d0=0) such
that di<C

e VYScV define d(S)=2di,ieS

e Each vehicle performs at most one route

e K=Kmin where Kmin is the minimum number of vehicles
to serve all the customers

¢ Kmin may be determined solving a Bin Packing Problem
(BPP) (NPhard problem but with fast approximation
algorithms)

CVRP-Capacitated VRP

e VYScV\{0} define r(S) the minimum number of vehicles
to serve the customers in S

e | E(S)
e trivial bound .r-c\s,.:[?—‘

e Solution: a set of exactly K routes (circuits) with
minimum cost such that:
* (a) each circuit visits the depot
» (b) each customer is visited by exactly a single route
e (c) the sum of the customer demands visited by a
route does not exceed C

2z

CVRP-Capacitated VRP

e Simple variants:
o If K>Kmin some vehicle may not be used
« find at most K routes
o fixed costs for using vehicles
o find the minimum number of routes

« Different vehicle capacities Ck k=1,...,K
e Complexity

o the CVRP is a Strongly NP-hard optimization problem
e it generalizes the TSP

279

CVRP-Capacitated VRP

o

£

R

al. (1579) with 199 costemers.

DCVRP-Distance Constrained VRP

A variant of CVRP:

the capacity constraints is replaced by a maximum route
length (time) constraint

V(i, j)eA’ tij=0 the length (time) to travel from i to j

T = maximum route length (time)

Tk k=1,..,K if the vehicles are different

VieV customer, a service time si may be defined
explicitly or added to the travel times (t'ij= tij + si/2 +
sjif2)

e The cost usually coincides with length (time)

Solution: the minimum total length (time) solution as for
CVRP

e DC-CVRP: both distance and capacity of vehicles are
constrained

VRPTW-VRP with Time Windows

o variant of CVRP:

VieV customer, a time window (TW) is defined as the

time interval [ai, bi]

VieV\{0} customer, a service time si is given

V(i, j)eA’ tij=0 a travel time is given

the service for each customer must start within his TW

in case of early arrival the vehicle must wait time instant

ai before starting the service

the routes starts at time 0

¢ Travel times usually coincide with costs

e TWs induce an implicit orientation (an asymmetric
model can be used)

|
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VRPTW-VRP with Time Windows

e Solution: a set of exactly K routes (circuits) with
minimum cost

e such that:
¢ (a) each circuit visits the depot
* (b) each customer is visited by exactly a single route
e (c) the sum of the customer demands visited by a
route does not exceed C
e (e) for each customer the service starts within the
TW [ai, bi] and the vehicle stops si time instants

VRPTW-VRP with Time Windows
Variants

With soft time windows the violation is a cost in the
objective function

Goals (2): first minimize the number of vehicles and
second the total distance. Initial solution NP-Hard.

Complexity: Strongly NP-hard generalizes CVRP (ai=0
b|=oo)

TSPTW is the special case for K=1 and Czd(V)

VRPB - VRP with Backhauls

* An extension of CVRP:

e the set of customers is partitioned into Linehaul
Customers (LC) and Backhaul Customers (BC)

e V=LUB |L|=n |B|]=m

¢ LC require a quantity of goods to be delivered

¢ BC require a quantity of goods to be picked up

e Precedence constraint among the LC and BC served by
the same route:
¢ all LC must be served before any BC

2|

VRPPD - VRP with Pickup and Delivery

¢ An extension of CVRP:
» each customer is associated with two quantities:
¢ di demand of commodities to be delivered
¢ pi demand of commaodities to be picked up
e the commodities (goods) are  assumed
homogeneous (sometimes only di= di - pi is
specified)

o for each customer is defined:

« Qi vertices that are origin of the delivery demand

o Di vertices that are destination of the picked up
demand

e at each customer location the delivery is
performed before the pickup

VRPPD - VRP with Pickup and Delivery

e Solution: a set of exactly K routes (circuits) with
minimum cost

e such that:

¢ (@) each circuit visits the depot

e (b) each customer is visited by exactly a single
route

¢ (c) the current load of a vehicle along the circuit is
non negative never exceed the vehicle capacity C

e (d) V customer i, the customer in Oi (different
from the depot) are served in the same circuit
before Di

e (e) V customer i, the customer in Di (different
from the depot) are served in the same circuit
after Oi

VRPPD - VRP with Pickup and Delivery

e If the origin and destination of demands are
common (e.g., the depot) they may be not
explicitly considered = VRP with simultaneous P &
D (VRPSPD)

e Complexity: Strongly NP-hard generalizes CVRP
(Oi= Di={0}, pi=0 Vi)

e TSPPD specializes the VRPPD for K=1

2]
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VRP approaches

Exact Approach (up to 100 nodes)
Branch and bound (Fisher 1994)

Approximation
Clark and Wright (1964)
Hierarchical Approach (split + TSP)
Fisher & Jaikumur (1981)
Taillard (1993)
Multi-route Improvement Heuristics
Kinderwater and Savelsbergh (1997)

MetaHeuristics
Tabu search, Rochat and Taillard (1995)
Constraint Programming, Shown (1998)
Tabu search Kelly and Xu (1999)
Granular Tabu, Toth & Vigo (1998)
Ant System, Gambardella & al. (1999)

Clarke-Wright Saving Heuristic (1964).
A constructive procedure proposed for VRP

Start with an initial allocation of one vehicle to each customer (0
is the depot for VRP or any chosen city for TSP)

Calculate saving si/=c0/4+ 0 fFcjj and order the saving in
increasing order

At each step find the largest saving sij where:

. /and jare not in the same tour

neither /and jare interior to an existing route

vehicle and time capacity are not exceeded

link /and jtogether to form a new tour (replacing to other
routes)

AWM

Clarke-Wright Saving Heuristic

(Fiala 1978)

Clarke-Wright Saving Heuristic

s(4,6) =d(1,4) +d(1,6)-d(6,4) =57 +61-71 =47

TABLE 8-8 Cusssiieg of rafuse i be collected
1 6ach pain foe Exampls 13,

TABLE®-4 Diriances (Baiow disgonal) and swvings (above the disgonat)  Mode | 2 3 4 3 6 T & % W0
L2 3 45 6 T B 9 10 oy |4 6 5 4 7 3 5 4 4

TABLE 88 Savings st for Exemple 13,

i - E B
2| W4 23 8 E o 1 )
I o» 4 14 8 0 3 oM Lisk  Savigs  Lisk  Savings  Link  Sevings
AL 33 41 15 3§ X (100 B 6 4T @08
S|4 a3 o4 TN OB N 8 L L
L 8 B [ 1
66 6 % N on 5003 47 8 ::"(;: n gs: w Et\l: 3
Tl® o oe o omon % oW EU I 00m & (BT 3 @n 8
e 57 w8 ¥ a3
B4l 68 81 95 & s 3 LU 1 e o BN % L8y 3
9|4 T2 8w & 2 M I £ [0 T T - D
300 49 oam  n .90 2
00T % 14 B &5 46 43 46 36 o4 8 @ ® oo i
24 48 BEH B 2B 0
®9 4 e n om0

http://web.mit.edu/urban_or_book/www/book/chapter6/6.4.12.html

Clarke-Wright Saving Heuristic

o

s

1 (Depot)

.

3

FIGURE 6.21 Depot snd ning Boints 10 be visied.

20|

Clarke-Wright Saving Heuristic

g 3

&
FIGURE 6.31 Final solution to the refuse-collection VRP, using Algorithm 6.7, when
vehicle capacity is 23 units.
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Clarke-Wright Saving Heuristic

3

6
FIGURE 6.32 Final solution to refuse-collection VAP using Aigorthm 6.7, when vehiclo
capacity is 16 units.

TWO PHASE METHODS:

Cluster First ruote second

Phase 1: Clustering
A clustering problem is solved to assign each customer to a

single vehicle

Phase 2: Routing
Find the route for each vehicle (solving a TSP problem)

Cluster First — Route Second

Methods:

Elementary clustering methods
¢ Sweep algorithm
o Fisher-Jaikumar Generalized Assignment (GA) based algorithm
¢ Location-based heuristic

Truncated Branch-and-Bound approaches
e Levels of the exploration tree = vehicle routes
« Each level contains a set of (partial) feasible routes generated
by one or more criteria (e.g., savings)
¢ Branching = route selection

Petal Algorithm

Cluster First - Route Second

Sweep algorithm:

e Planar VRP

e Feasible cluster initially obtained by rotating a ray
centered at the depot

e A vehicle route is found by solving a TSP problem for
each cluster

Cluster 1 (customers
assigned to vehicle 1

Cluster First - Route Second

Sweep algorithm:

e Planar VRP

e Feasible cluster initially obtained by rotating a ray
centered at the depot

e A vehicle route is found by solving a TSP problem for
each cluster

ot Route 2
Route 1 / \
I > \
| = 3 ﬂ | Route 3

\

A AN
Route 5 \ /
Route 4

20|

Routing [7 Clusterin|

TWO PHASES APPROACH

1. Routing:

2. Clustering:

00|

50



Multi-Route Improvement Heuristic
Based on LS: exploration of a neighbourhood N(x) of
solutions
N(x) is built using “moves”
Possible moves:

< Insert a customer in a different position in the
sequence of visit

= Swap the positions of a pair of customers
- k-Opt
Two classes of methods:

Single route improvement
the assignment of customers to routes (vehicles) not
change (analogous to TSP improvement heuristic)

Multi route improvement
the moves may also change the customer-route

assignment
301

Multi-Route Improvement Heuristic
Kinderwater and Savelsbergh (1997)

=) /
—® &— —e-€
o ¥ ee o ©
. L G ,.,} J

Customers relocation

b

Crossover

Multi-Route Improvement Heuristic
Kinderwater and Savelsbergh (1997)

Phace
ol

Customers exchange

£

Kinderwater and
" Savelsbergh (1997)

[
¢s

() A crossover plas T-exchange.

Tabu Search with set-partition based Heuristic
(Rochat & Taillard 1995, Kelly & Xu 1999)

1. Keep an adaptive memory as a pool of good solutions

2. Some element (single tour) of these solutions are
combined together to form new solution (more weight is
given to best solutions)

3. partial solutions are completed by an insertion
procedure.
4. Tabu search is applied at the tour level

Ex |

Solution 1 Solution 2 (Kelly & Xu1999)

Solution 3 Consalidated Solution
Flgure 1. Two-phase procedure.

]
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VRPTW: MACS-VRPTW: Vehicle Routing
Problem with TWindows

|

Optimization, 1999

AN

MACS-VRPTW: Vehicle Routing Problem with Time
Windows Gambardella, Taillard, Agazzi, New Ideas in

MACS-VRPTW: Vehicle Routing Problem with
Time Windows, Gambardella, Taillard, Agazzi, 1999

—

VRPTW is transformed into a TSP by adding m-1 new depots

Eﬂl
MACS-VRPTW (Gambardelia et al.1999) MACS-VRPTW
* MACS-VRPTW: Multiple Anr Cedfany § ferr Vehiele Reusing Probfems with Time Window ®
Procedure
Multiple Objectives |
of velicles and esl Ir
Wactive_wvehicles(p | w dive mumber of aetive velicles it fi " g
w* +~ feapible initia stion with unlimited number of vehicles produced
Single Objective h a ne
Repeat
[ T i I 1 1 Wactive_vehicles (p* )
Activate A
Activate A
Single Solution While ACE
Artificial Ants Artificial Ants. ACE-TIME
W
if gactive_vehicles iy
VRP-TW: in case of vehicles and distance minimization two ant
colonies are working in parallel on the two objective functions End Whils _
until a stopping cr rion is met
E] | E |
= ACS-TIME: Travel n
Procedure
cn
1 initialize
v —— vith a nearest neighbor
e
2 s
Repeat Repeat
for sach aat k for each ant .
* v TITETL "
new_active_ant(k, local_search o}
and for each
then
ible and J, < /¥ then
send ' to MACSVREPTW
until a at
— — until a atc
311 312
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MACS-VRPTW

MACS-VRPTW (Gambardelia et al.1999)

Tours minimization Cost minimization
T o T o Unfeasible solutions are
repaired by insertion ] 1
procedures <\
a .0
9
d; \:/)/Og M\O/CJ
e e
d, — O
Pheromone Pheromone Cost ° ] /
Tours °
— Feasible solutions are
Search for a new feasible solution Minimize the cost of a improved with local
with one vehicle less feasible solution search procedures
313 314
Benchmark problems
With Time Windows (TSPLIB)
56 problems (Solomon, 1987) of six different types
R1 Cl1 RC1 R2 c2 RC2

(C1,C2,R1,R2,RC1,RC2).
Each data set contains between eight to twelve 100-node

problems. G\] /\/)
C = clustered customers with easy TW. {_21\ —ﬁgg
*R = customers location generated uniformly f‘j*c, &c\} /,“
randomly over a square. J'@/p o
*RC = a combination of randomly placed \/\j\%
and clustered customers. T
*Sets of type 1 have narrow time windows and small vehicle
capacity.

*Sets of type 2 have large time windows and large vehicle
capacity.

|

VEI DIST | VEI DIST | VEI DIST |VEI DIST | VEI DIST | VEI  DIST

MACS- | 12.00 1217.73| 10.00 828.38| 11.63 1382.42|2.73 967.75| 3.00 589.86| 3.25 1129.19|
VRPTW
RT 12.25 1208.50| 10.00 828.38[ 11.88 1377.39[2.91 961.72| 3.00 589.86| 3.38 1119.59
TB 12.17 1209.35| 10.00 828.38 11.50 1389.22(2.82 980.27| 3.00 589.86| 3.38 1117.44
CR 12.42 1289.95| 10.00 885.86 12.38 1455.82(2.91 1135.14| 3.00 658.88 3.38 1361.14
PB 12.58 1296.80| 10.00 838.01f 12.13 1446.20[3.00 1117.70] 3.00 589.93| 3.38 1360.57
TH 12.33 1238.00] 10.00 832.00[ 12.00 1284.00{3.00 1005.00] 3.00 650.00f 3.38 1229.00

Average of the best solutions computed by different VRPTW algorithms.
Best results are in boldface. RT=Rochat and Taillard (1995), TB= Taillard
et al. (1997), CR=Chiang and Russel (1993), PB=Potvin and Bengio (1996),
TH= Thangiah et al. (1994)

£

Old Best New Best
Problem | source | vehicles | length | vehicles | length
rl12.dat RT 10 953.63 9 982.140
1201.dat S 4 1254.09 4 1253.234
1202.dat TB 3 1214.28 3 1202.529
1204.dat S 2 867.33 2 856.364
1207.dat RT 3 814.78 2 894.889
r208.dat RT 2 738.6 2 726.823
1209.dat S 3 923.96 3 921.659
r210.dat S 3 963.37 3 958.241
1c202.dat S 4 1162.8 3 1377.089
rc203.dat S 3 1068.07 3 1062.301
rc204.dat S 3 803.9 3 798.464
rc207.dat S 3 1075.25 3 1068.855
rc208.dat RT 3 833.97 3 833.401
tail00a.dat RT 11 2047.90 11 2041.336
tail00c.dat RT 11 1406.86 11 1406.202
tail00d.dat RT 11 1581.25 11 1581.244
tail50b.dat RT 14 2727.77 14 2656.474,

New best solution values computed by MACS-VRPTW.
RT=Rochat and Taillard (1995), S = Shaw (1998) TB= Taillard et al. (1997)

AntRoute: Fleet optimization for fuel

KTI/CTI distribution, Pina Petroli SA,CH

Fuel distribution
Multiple time windows
Stochastic quantity

Accessibility restrictions
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Non homogeneous Vehicle
characteristics

o Lorries must return to the p—— e 1
depot for the lunch break Topudestssmmiod [ 7 || m [0 4] 3
« Lorries are equipped with: || e P
= tanks of different .
capacities (7500, 11500, SO e =
23500 litres) C e Ll
= hoses of different Bere =~ = =
diametres (1 2 and 2 AN e -
inches) and length (30, 50, i o =2 =
120 metres)
Half day availability S S

Half day planning with one week
visibility

Et]|

Service times
assumptions

« Travel time between two nodes is computed according
to distance, road type and weather conditions

« Customer lookup time: it is a parameter of the customer

o Set-up time: it is computed according to the length of
the hose

o Qil delivery time: it is computed according to an
approximate equation of the valve installed on the lorry

Minimise the total time required to serve all orders

Ext]|

Dynamic fleet optimization for fuel
distribution, Pina Petroli SA, Grancia, CH

Improvement certified at

Pina Petroli SA, Grancia, CH

=
—_—e e =

Computational time PC: 3 minutes
Average improvement: 20%

321

Der Spiegel

& Duft der Daten

Auf kurzestern Weg trgen

rer nutzen jetrt die
kien, um die Abkiufe
Fabriken ru optimiensn.

Am
diest Luca Maria

Antptima

22|

The Suhr distribution problem

« Central Depot

» Non-homogeneous fleet

« Customers accessibility
restriction

« Customers time windows

Objectives

1. N. of tours minimization , £~ v ™M
2. Cost minimization

Cost function = total_km * km_cost + total_time_violation * tv_cost

£l

Non-homogeneous (infinite) fleet of vehicles

* Truck
* Truck + trailer

* Tractor unit + semi-trailer

Remark: All capacities are expressed in pallets.

Other features:

. Embedded lift « Parking time (constant)

« Refrigerated container Service time (variable)

« Trailer hook / unhook time (constant)

324
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Speed Model Ant-Route
speed - Distances The first prototype test
wkmh
- 0-5 km => 20km/h Total number of orders 228
) 5-10 km => 25km/h Total number of pallets 1736
L AT oo b e 1015 20k Type of trucks available MW+ANH, SS
- => n
" PN E " m MW-+ANH capacity 35 pallets
i 3 15-20 km => 35kmh SS capacity 33 pallets
. L 2
o 4 20-30 km => 40kmh MW capa}cny 17 pallets
Al Kilometric cost 3.10fr./km
e ) 30-45 km => 45km/h Time windows violation cost 75.00 fr. / hour
ER 45-65 km => 50 km/h Time windows width 60 min
* Suhr opening - closing time 05:00 - 22:00
0 65-90 km => 55km/h = == =
Trailer unhooking time 10 min
. 90 .. km => 60km/h Trailer hooking time 10 min
o = 00 1 m = Parking time 10 min
Unloading time 90 sec/ pallet
225 325
Ant-Route results Ant-Route result after 5 minutes
1stdisp. | 2nd disp. Ants Gap (1st disp.) pezhiat
Total number of tours 59 60 58 -1 - . e
Number of tours with AHZ 47 43 53 +6 terthure” o Gallen, -
Number of tours with SS 11 15 0 -1 = Urich
Number of tours with MW SOLO 1 2 5 +4
Average truck filling percentage 85.75% 85.50% | 88.91% +3.16% LIECI
Average number of orders per tour 3.881 3.816 3.931 +0.05
Average number of pallets per tour | 29.424 28.933 29.931 +0.507
Total time windows violation time | 159h07m | 131h 19m | 12h24m - 146h 43m ch {
Total waiting time 6h30m | 39h 14m | 12h24m +5h 54m Ll
Total delay time 152h37m | 92h5m OhOm -152h 37m
Total km 10397 km | 10793 km [10579 km +182 km
Total cost 44'165fr. | 43'307 fr. | 33'725 fr. | - 10'440 fr. 23.6% -'A.'f""a”“e 5
Solution generation time 4 hours 4 hours 5 min -3h 55m ,/’ . \ P
S ¢
I/
i\l/ P
~Geneva
327 Zﬁ'
o Total tours vs computation time Total solution cost vs computation time
45000
75+
43000
70+ 41000
= 5 39000 \\
65
37000
60 +
35000 4
55 T T T T T T T T T T T T T T 33000 I T T T T T T T T T T T A T
CITEERTII2333383FEEE88E ] "IRBER ;3233338 8388588¢8%
CPU Time (sec) CPU Time (sec)
£z 0]
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] V
;
Regionalization 4
Cr
Ant Route Results
Main Objective: number of tours minimization
Number Tot KM Km x Loading % Computation
of tours tour Time
Time windows | -1206 |-2,2% | +12% |+13,5% 5 min
+- 30 minutes Vs
With Distribution 4 persons
’ areas 4 hours
Free Optimization | -21 504 |-14,2% | +10% | +27% 5 min
No Time
Windows
No areas
331 32'
Trucks distribution during the day Pallets distribution during the day
Pallets time distribution
‘ @ Tot Trucks Out B Tot Trucks In
16 400
14 350 -
129 300 N
£ 10 2 250 1
2 E
bl a
s 81 5 200 1
5 £
2 6 3 150
41 100 1
27 H ’-I 50 H
. 1Ll .
888888888888 88888888888s8 2282882838828 388232882388238888¢883s
5883885888 cd8sbe&redgyyRI E88EB8&EE5888cd88Feecedgy Ry
$3888s5s88888s8s888s8s888888¢s8s $ 8838838888888 88s888s888¢ss
g2z 883885882 cd¢esFEereeg R 8838388588382 erseegg ]
Exs]| 34
; Ant-Route as a Strategic tool
Ant-Route as a Strategic tool g
Total number of tours Total cost
@0 51000
85 A
\ 46000
80
75 41000
[
70 I
O
65 1 36000
60
31000
55 —e—_|
T————1— ~—
* ‘ ‘ o 26000 ‘ ‘ : ‘
10 30 60 %0 120 180 240 infinite 10 20 0 %0 120 180 20 infinite
Time windows width (min) Time windows width (min)
ExS| E=T|
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Ant-Route as a Strategic tool

Average truck filling %

100

2 - -
85 //
vl

70

65

60 /
55
50

10 30 60 90 120 180 240 infinite
Time windows width (min)

337

Ant-Route: about the algorithm...

Foundations

= MACS-VRPTW (1999, Gambardella, Taillard, Agazzi)

= Two colonies of ants

= Constructive phase (exploration & exploitation) + Local search

Extensions & Adaptations

= Vehicle choice at the start of each tour (pheromone based)
= Trailer hooking / unhooking management

= Constrained tours shape (to cope with dispatchers tastes...)
= Area structure management

= Starting time of each tour

= Vehicles usage optimization

Local search exchanges

o]

Ant@ptima

e
§
=
=

LOGISTICS GROUP

Ant@Route

NUMBE|

Numberl Logistics Group lItalia

Number1 is the largest Italian logistic operator (Barilla group)
Moves goods from factories to stores
700/1000 vehicles x day

No own fleet but all external trucks
Multiple starting points

Pick-up and delivery along Italy

LOBISTICS GEOU|

The distribution problem of Numberl

* Pick-up & Delivery: there is not a central depot

* Every order has a source point and a destination point

« Every point of the distribution network has a time window
* Every point of the network has a constant service time

* Heterogeneous point typology: providers, depots, clients

» Homogeneous fleet of vehicles

Objective:
Maximization of the average tours efficiency.

This should implicitly have as a side effect the minimization
of the number of tours and of the total km.

£
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Homogeneous (infinite) fleet of vehicles

Tractor unit + semi-trailer _

» Each vehicle has two capacities: Nominal and Maximum

- Each capacity has three dimensions: pallets, kg, m3

Unit of Nominal Maximum
measurement capacity capacity
pallets 33 34
kg 27000 28350

m? 76 76

ELE|

Tours efficiency
M;
qulj
j=1

T QL N

= Efficiency of the i-th tour

1

i = Amount of orders in the i-th tour

= Nominal capacity of the vehicle associated with the i-th tour

= Total length (km) of the i-th tour

= Pallets of the j-th order

= Distance (km) between source and destination points of the
j-th order

= Total amount of tours

= Average tours efficiency (= the objective function)

Constraints

Respect of the time windows at each distribution point

N =

Respect of the max. capacities of the vehicles

3. Atmost4 points pertour
At most 2 clients per tour

All pick-ups of a tour must have the same date

All deliveries of a tour must have the same date

At most 200 km between two consecutive pick-ups

©® N o o kW

At most 200 km between two consecutive deliveries
9. At most 9 hours of travel per day

10. Pick-ups & deliveries cannot be interleaved

11. Order groups cannot be split into different tours
£ |

Feasibility study

Different constraints scenarios have been evaluated

Max Max Use Use
points | clients | pick-up delivery
Option | per tour | per tour | regions regions
1 - - NO NO
2 - 2 NO NO
3 4 2 NO NO
4 4 2 YES NO
5 4 2 YES YES

|

Normalized number of tours

Feasibility study

1.060

1.050

1.030 Date

—21.10.2002
1.020 — 22102002
23.10.2002

—24.10.2002
1.010 —25.10.2002
— 26.10.2002

1.000

0990

0980

0970

1 2 3 4 5
Options

Average tours' efficiency

0885

0875

0865

0855

H
2

Z

0835

0825

0815

0.805

0795

Feasibility study

Date

— 21.10.2002
— 22.10.2002

23.10.2002
— 24.10.2002
— 25.10.2002
— 26.10.2002

3 4
Options

e
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Final version acceptance test

* Integration of further constraints and requests
* Refinement of the algorithm
* The challenge: Number1 vs ANT-Route over one month

* Number1 tours penalization

Number1 | ANT-Route | Absolute | Relative
difference | difference

Performances Planner VS AntRoute

Tours -2.63% .
Total km -1.39% -
Efficiency without penalty +3.17% - K
Efficiency with penalty +4.19% - R PN e s s s 5 2 s e e e
PO S ¢ & &
EX] | £ |
) o Constructive phase
ANT-Route: Algorithm description P3 P3
’ e
. . —e 0o °o—o
Same philosophy as in MACS-VRPTW but... P1 P2 e D2 DI P1 P2 \,/Dz D1
- L D D
= Only one colony of ants (efficiency maximization) 3 3
= Each order involves two physical points (source and First level local search
destination): this heavily increases the search space. P1 P2 P3 D3 D2 D1 P1 P2 P3 D3 D2 D1
*—o—0——0—0—0
= The algorithm consists of: ._,.> <: :><: :
= a constructive phase using a LIFO policy; P4 P5 P6 D6 DS D4 P4 P5 P6 D6 D5 D4

= a first level local search exchanging orders between
different tours and preserving the LIFO structure;

= a second level local search exchanging points within
each tour individually.

Second level local search
P3

P1 D3 D2
v

D1

P3
°
P1 D3 D2
o/ \-_o\ /o
P2 o
D1

£

NUMBE|

Numberl Logistics Group lItalia

LOBISTICS GEOU|

AntRoute is fully integrated in the
operative process

Continuous optimization of new
orders

Performance improvement from
210 4-5%.

Performance Parma-Veneto from
86.5% to 89.9%.

£l

Outside the
terminal

MOSCA EU 5
(2001-2003)
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From the real problem

E=s|

The Dynamic Vehicle Routing Problem,
Montemanni et. All 2003

New orders arrive when the working day has already started

* New orders have to be assigned to vehicles which may have
already left the depot

« Vehicles do not need to go back to the depot when they are
assigned new orders

¢ A communication system must exist between vehicles and
the depot
Problems covered:

Parcel collection Fuel distribution
* Feeder systems e ..

E=|

Strategy for DVPRs

_—

Working day

1 1 1 1 1 1 1 1 1
[S—)

Time slice

« The working day is divided into ;s time slices

* For each time slice a Static Vehicle Routing like
problem is solved by an Ant Colony System (ACS)
algorithm

The ACS-DVRP algorithm. Elements

1. Event manager

« Collects new orders

« Keeps trace of the already
served orders

« Keeps trace of the current
position of vehicles.

« Creates a sequence of SVRPs

* Assign orders to vehicles

Customers Vehicles

Pheramone
conzervetion
procecure

2. Ant Colony algorithm
« Solves SVRPs

Pheromone

ACS
matrix algorithrm

[

3. Pheromone conservation procedure
« Passes information about good solutions from a SVRP to the
following one of the sequence

|

ACS-DVRP - Event Manager (2)

At the end of a time slice the following operations are carried out:

« Orders starting within the next Ty + T (in the solution of the last
SVPR) are committed to the respective vehicles

» A new SVR-like problem is created, where
— New starting positions and residual capacities are calculated
for the vehicles
— New orders received during the last time slice are inserted and
committed orders are deleted

+ A pheromone conservation strategy is run

» The ACS algorithm is run for Ty seconds

|

ACS-DVRP - Pheromone conservation

When the ACS algorithm finishes working on a SVRP:

« Pheromone matrix contains encrypted information about good
solutions

* The next SVRP of the sequence is potentially very similar to the
SVRP just considered

These considerations are used to prevent optimization to restart each
time from scratch. The new pheromone matrix is then as follows:

7i=(1- y;) fpld + i for each pair of customers contained

in both the new and the old SVRP
=N for pairs involving new customers

V: is a new parameter which regulates pheromone conservation

|
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Benchmarks description (1)

The problems have been originally presented in
« Kilby et al. “Dynamic VRPs: a study of scenarios”. Technical
report APES-06-1998, University of Strathclyde, 1998

The problems are derived from well-known SVRPs:
« 12 are from Taillard, “Parallel iterative search methods for
vehicle-routing problems”. Networks, 23(8):661-673, 1994
« 7 are from Christofides and Beasley, “The period routing
problem”. Networks, 14:237-256, 1984
+ 2 are from Fisher et al. “A generalized assignment heuristic
for vehicle routing”. Networks, 11:109-124, 1981

Benchmarks description (2)

Information added (specified by Kilby et al.):
« The length of the working day (T).
* An appearance time for each customer
* A service time for each customer
» The number of vehicles, set at 50 for each problem

Extra parameters to be set (not specified by Kilby et al.):
* The time of cutoff. T,,=05T
* The advance commitment time. T, =0.01 T

361 Eﬂ
Number of time slices nts Computational results
. No pheromone ACS-DVRP
. * No pheromone = multi- —|meven) 7 e | e [ s
Nis €100 71 tai75a start local search algorithm [“cioo | os0.as | tieoe7 | 112404 | o7326 | 110061 | 10s6.16
Min 1004.58 = 311.95 1880.11 — c100b 978,39 1173,01 1040,99 944,23 112352 | 1023,60
10 Max 1145.20 399.26 2105.14 ° ACS_DVRP - the methOd 120 1546,50 1875,35 1752,31 1416,45 1622,12 1525,15
we propose cts0 | 146836 | 154154 | 149300 | 134573 | 152245 | 145550
Av 1083.64 = 362.93 1963.19 c199 | 177433 | 1956,76 | 1898,20 | 1771,04 | 1998,87 | 1844,82
v 57306 | aiLis | 184308l cso | eoss2 | 75680 | 72215 | 30 | 756,17 | estee
c7s | 108650 | 114232 1098.85 | 1009.38 | 1086.65 | 1042.39
25 Max 1100.61 = 420.14 2043.82 f34 | 16072,97 | 1732573 | 16866,79 | 1513551 | 1730569 | 16083,56
e B P ACS leads to the following | _m1 | ssezs | aor1s | sooas | atnre | azoss | sameo
- . tait00a | 2427.07 | 258302 | 251020 | 237502 | 257570 | 242838
Min | 1131.95 | 333.25 | 1966.92 improvements: itoon | 230205 | 259257 | 240691 | 22mn.07 | 2assss | zarso
s vox V12897 45273 | 213387 « 4.86% for Min taitooc | 1599.19 | 1800.85 | 170440 | 156230 | 180420 | 165591
- «2.40% for Max tait00d | 202682 | 216530 | 210054 | 200813 | 214167 | 2060.72
vg 1185.25 = 417.74 2019.82f tait50a | 3787.53 | 416542 | 398224 | 3644,78 | 4214,00 | 384018
*4.37% for Avg tai1s0b | 3313,03 | 365563 | 348579 | 316688 | 345169 | 3327.47
Travel times. 5 runs for each problem (J; = 0.3) taitsoc | 300047 | 363517 | 325308 | 281148 | 322673 | 301614
titsod | 315021 | asa127 | as2as7 | sosser | sss273 | 320375
wirsa | 191148 | 214057 | 2012.13 | 184308 | 204382 | 194520
wizso | 163483 | 193435 | 178246 | 153543 | 192364 | 170408
. . wirse | 160620 | 188624 | 169550 | 157498 | 184242 | 165358
ngs = 25 is the best choice ACS has always the best wrsa | toisat | tesor | tssars | warass | earts | 5000
values for Min and Avg Total | sstsa51 so0s081 sezetso | sosseor | srotssz  ssrenor |
Travel times. 5 runs for each problem (Intel P4 1.5 GHz)
Zﬂ 3
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