

LAVORO IN UN SISTEMA
TERMODINAMICO

$$\mathbf{L} = \int \mathbf{F} \, \mathbf{d}\mathbf{x} = -\int \mathbf{p} \, \mathbf{d}\mathbf{V}$$

IL LAVORO E' DATO DALL'AREA SOTTESA DALLA TRASFORMAZIONE NEL PIANO p-V E DIPENDE DAL CAMMINO SEGUITO NELLA TRASFORMAZIONE

CALORE

E' L'ENERGIA SCAMBIATA FRA UN SISTEMA E L'AMBIENTE CIRCOSTANTE A CAUSA DELLA LORO DIVERSA TEMPERATURA

LA QUANTITA' DI CALORE NECESSARIA PER PORTARE UN CORPO DALLA TEMPERATURA T1 ALLA TEMPERATURA T2 E' L'ENERGIA NECESSARIA PERCHE' I MOTI DELLE SUE PARTICELLE PASSINO DA QUELLI CARATTERISTICI DEL PRIMO STATO A QUELLI DEL SECONDO

SI CONSIDERA POSITIVO IL CALORE CEDUTO DALL'AMBIENTE ESTERNO AL SISTEMA TERMODINAMICO E NEGATIVO QUELLO CEDUTO DAL SISTEMA TERMODINAMICO

UNITA' DI MISURA

ENERGIA

1 Joule = 1 N x m

1 kcal = 4.186 Joule

1 kWh = 3.600.000 Joule

ORIGINARIAMENTE LA CALORIA ERA STATA DEFINITA (SPERIMENTALMENTE) COME UNITA' DI MISURA DEL CALORE ED E' DATA DALLA QUANTITA' DI CALORE NECESSARIA PER INNALZARE DI 1°C (DA 14.5°C A 15.5°C) LA TEMPERATURA DI 1 g DI ACQUA

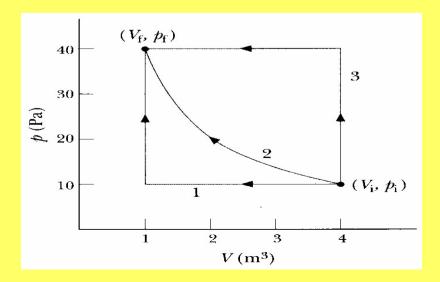
POTENZA

1 W = 1 J / s

1 W = 0.860 kcal/h

1 kW = 860 kcal/h

1 - TRASFORMAZIONE ISOBARA


LA PRESSIONE RIMANE COSTANTE DURANTE <u>TUTTA</u> LA TRASFORMAZIONE V/T = costante (n, p costanti)

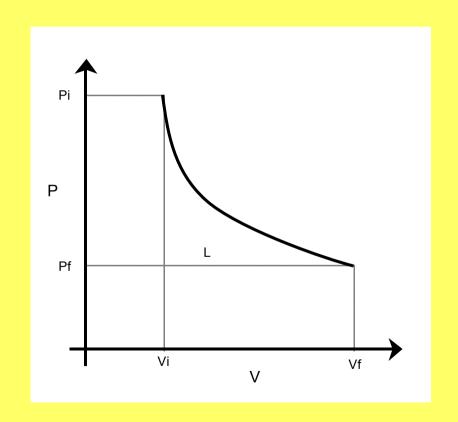
2 - TRASFORMAZIONE ISOTERMA

LA TEMPERATURA RIMANE COSTANTE DURANTE <u>TUTTA</u> LA TRASFORMAZIONE pV = costante (n, T costanti)

3 - TRASFORMAZIONE ISOCORA

IL VOLUME RIMANE COSTANTE DURANTE \underline{TUTTA} LA TRASFORMAZIONE p/T = costante (n, V costanti)

TRASFORMAZIONE ADIABATICA


AVVIENE SENZA ALCUN SCAMBIO DI CALORE DURANTE <u>TUTTA</u> LA TRASFORMAZIONE

$$pV^k = costante$$

$$T/p^{(k-1)/k} = costante$$

$$T V^{k-1} = costante$$

$$k = C_p / C_v$$

EQUAZIONE DI STATO DEI GAS IDEALI

$$pV = nRT = (m/M_m)RT$$

$$p V/m = (m / M_m) R T / m$$

$$pv = (R/Mm) T$$

N = numero totale di particelle che compongono il gas

 $N_a = 6,022 \times 10^{23}$ particelle/mole = numero di Avogadro

 $n = N/N_a = m/M_m = numero di moli$

R = 8,3145 J/mole K = 8.314,5 J/kmol K =

= costante universale dei gas ideali

v = V / m = volume specifico (m3/kg)

 $M_m = massa molare (kg/kmol)$

CAPACITA' TERMICA MASSICA (CALORE SPECIFICO) DI UNA SOSTANZA

E' UNA CARATTERISTICA DELLA SOSTANZA CHE COSTITUISCE IL SISTEMA ED E' DATA DAL RAPPORTO FRA IL CALORE SCAMBIATO E IL PRODOTTO MASSA x SALTO TERMICO

$$c = Q / m DT$$

IL CALORE NECESSARIO PER PROVOCARE UNA VARIAZIONE DI TEMPERATURA DT DI UNA MASSA m DI UN SISTEMA E' DATO DA:

$$Q = c m DT$$

CALORE SPECIFICO DI SOLIDI E LIQUIDI

E' SOSTANZIALMENTE INDIPENDENTE DALLE MODALITA' CON LE QUALI AVVIENE IL PASSAGGIO DI CALORE ED E' CIRCA COSTANTE IN AMPI INTERVALLI DI TEMPERATURA

CALORE SPECIFICO DEI GAS

DIPENDE DALLE MODALITA' CON LE QUALI AVVIENE LO SCAMBIO DI CALORE

- $c_V = CAPACITA'$ TERMICA MASSICA (CALORE SPECIFICO) A VOLUME COSTANTE
- $c_p = CAPACITA'$ TERMICA MASSICA (CALORE SPECIFICO) A PRESSIONE COSTANTE

SI MISURANO IN kJ/kg K

PER I GAS IDEALI SI UTILIZZANO ANCHE IL Cp E IL Cv RIFERITI ALLA MOLE ANZICHE' ALL'UNITA' DI MASSA

- $C_V = CAPACITA'$ TERMICA MOLARE A VOLUME COSTANTE
- C_p = CAPACITA' TERMICA MOLARE A PRESSIONE COSTANTE

SI MISURANO IN kJ/kmol K

 $Cv = c_v x Mm$ (kJ/kg K x kg/kmol) $Cp = c_p x Mm$

CAPACITA' TERMICA MASSICA (CALORE SPECIFICO) DEI GAS

c_v E c_p SONO DIVERSI DA UN GAS ALL'ALTRO, PERCHE' DIPENDONO DALLA MASSA MOLARE

PER CV E CP ESISTE UNA FORMULAZIONE PIU'GENERALE, CHE NON DIPENDE DAL TIPO DI GAS, MA SOLO DAL NUMERO DI ATOMI CHE COMPONGONO LA MOLECOLA

GAS MONOATOMICI (ESEMPIO: ELIO He)

$$\bullet \quad C v = 3/2 R$$

$$C p = 5/2 R$$

GAS BIATOMICI (ESEMPIO: OSSIGENO O₂)

•
$$C v = 5/2 R$$

$$C p = 7/2 R$$

GAS POLIATOMICI (ESEMPIO: METANO CH₄)

•
$$C v = 3 R$$

$$C p = 4 R$$

PERTUTTIIGAS: Cp = Cv + R

ESPONENTE DELL'ADIABATICA:

- $k = c_p / c_v = 1.67$ per gas monoatomici
- $k = c_p / c_V = 1.4 \text{ per gas biatom ici}$
- $k = c_p / c_V = 1.33 \text{ per gas poliatom ici}$

CAPACITA' TERMICA MASSICA NELLE VARIE TRASFORMAZIONI

ADIABATICA
$$Q = 0$$

 $c = Q / m DT = 0$

$$\begin{array}{ll} ISOTERMA & DT = 0 \\ c = Q \ / \ m \ DT = INFINITO \\ \end{array}$$

$$\begin{array}{ll} ISOCORA & V = COSTANTE \\ c = cv \end{array}$$

$$\begin{array}{ll} ISOBARA & p = COSTANTE \\ c = cp & \end{array}$$

ENERGIA INTERNA DI UN GAS IDEALE

$$E = n Cv T = m c_V T$$

$$e = E / m = c_V T$$

$$E = 3/2 \, n \, R \, T$$

$$E = 5/2 \, n \, R \, T$$

$$E = 3$$
 n R T

gas monoatomici

gas biatomici

gas poliatomici

L'ENERGIA INTERNA DI UN GAS IDEALE DIPENDE SOLO DALLA SUA TEMPERATURA E NON DA PRESSIONE E VOLUME

$$DE = n Cv DT$$

$$De = c_v DT$$

ENTALPIA DI UN GAS IDEALE

$$H = E + pV$$

$$H = n Cv T + n R T = n (Cv + R) T = n Cp T$$

$$H = n Cp T = m c_p T$$

$$h = H / m = c_p T = e + pv$$

$$DH = n Cp DT = m c_p DT$$

$$Dh = c_p DT$$

COME \mathbf{E} , ANCHE \mathbf{H} E' FUNZIONE DI STATO

GRANDEZZE TOTALI

 $V = VOLUME (m^3)$

E = ENERGIA INTERNA (J)

H = ENTALPIA(J)

L = LAVORO(J)

Q = CALORE(J)

GRANDEZZE SPECIFICHE

 $v = VOLUME SPECIFICO (m^3/kg)$

e = ENERGIA INTERNA SPECIFICA (J/kg)

h = ENTALPIA SPECIFICA (J/kg)

1 = LAVORO PER UNITA' DI MASSA (J/kg)

q = CALORE PER UNITA' DI MASSA (J/kg)

TRASFOR- MAZIONE	EQUAZIONE	LAVORO L	CALORE Q	VARIAZ. E.I. DE
T = COST.	Pi Vi = Pf Vf	- n RT ln (Vf / Vi)	- L	0
P = COST.	Vi / Ti = Vf / Tf	- P (Vf - Vi)	n Cp (Tf - Ti)	n Cv (Tf - Ti)
V = COST.	Pi / Ti = Pf / Tf	0	n Cv (Tf - Ti)	Q
ADIABATICA	Pi Vi^k = Pf Vf^k	(Pf Vf - Pi Vi) / (k - 1)	0	L