Pompe di Calore

LIUC – 7 Ottobre 2009 Paolo Torri

Cos'è

POMPA DI CALORE

La pompa di calore è una macchina in grado di trasferire calore da un corpo a temperatura più bassa ad un altro a temperatura più alta.

Storia

POMPE DI CALORE

1755 -William Cullen (Scozia): forma il ghiaccio facendo evaporare acqua sotto vuoto

1805 -Oliver Evans (USA): invenzione del ciclo a compressione

1834 - Jacob Perkins (USA): primo brevetto su macchine a compressione

1842-John Gorrie (USA): prima macchina a compressione per condizionare un ospedale

1850 -Edmond Carrè (Francia): macchina discontinua per fare il ghiaccio ad H2O-H2SO4

1859 -Ferdinand Carrè (Francia): macchina continua ad H2O-NH3

1920 - Vengono adottati i CFC nelle macchine a compressione

~1940 –Compaiono i primi chillers ad Assorbimento negli USA

1970 – prime macchine ad assorbimento (ARKLA)

1997 - Protocollo di Kyoto: problema dei gas serra

Come Funziona

Come Funziona

Compressione, che avviene somministrando energia dall'esterno, durante la quale il fluido refrigerante allo stato gassoso aumenta di pressione e temperatura

Condensazione: il fluido refrigerante attraversa uno scambiatore di calore o condensatore e cede il calore alla sorgente calda passando dallo stato di vapore a quello di liquido.

Espansione: il fluido refrigerante, liquido e in pressione, attraversa una valvola che lo introduce in una camera di espansione (processo di laminazione) in cui subisce una riduzione di pressione e di temperatura.

Evaporazione: il fluido passa dallo stato liquido a quello di vapore, prelevando energia dalla sorgente termica fredda

Come Funziona

Fluidi Frigorigeni

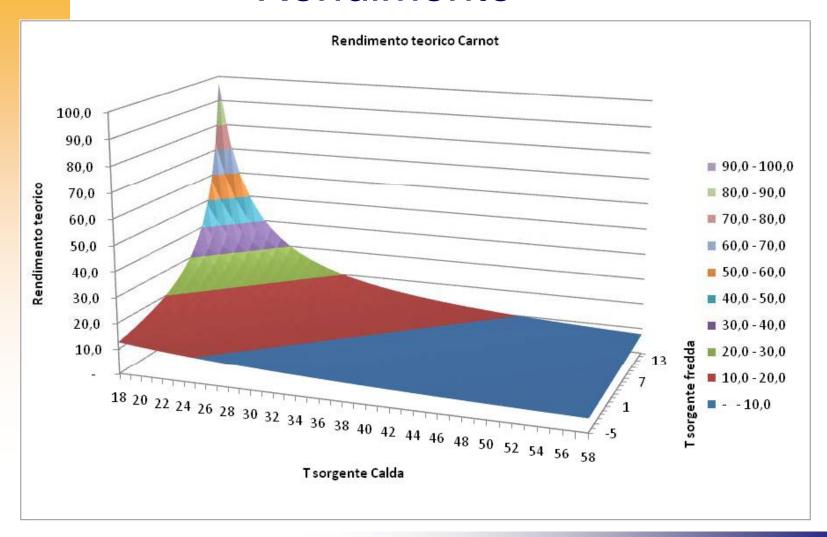
Acqua: temperatura di congelamento a 0°C

Ammoniaca: esplosiva, corrosiva e "tossica"

Idrocarburi alogenati: non tossici, non esplosivi es. HFC Idrofluorocarburi

Clorofluorocarburi CFC: dannosi per l'Ozono

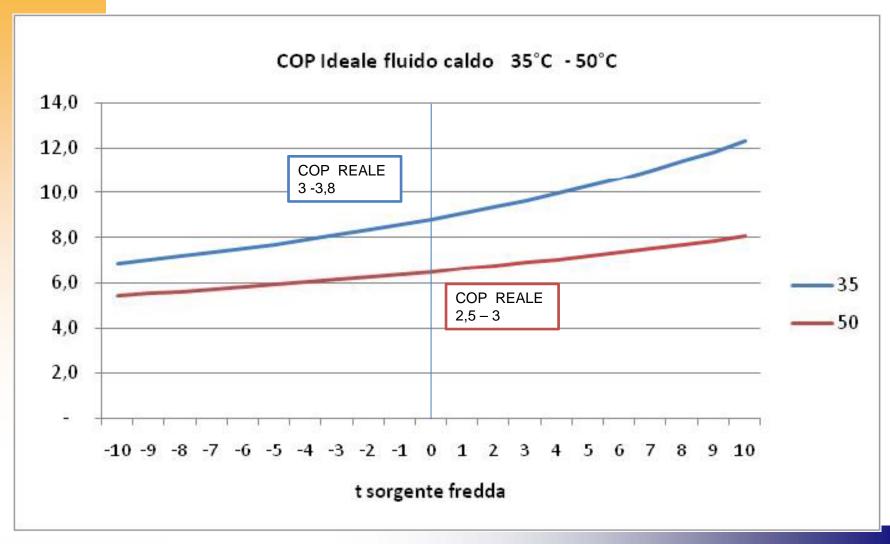
Anidride carbonica: alte pressioni di esercizio



Coefficiente di Prestazione (COP) - rapporto tra energia fornita ed energia consumata

- inversamente proporzionale alla differenza tra la temperatura della sorgente e la temperatura dell'utilizzatore
- -Rendimento ≤ rendimento Carnot

$$COP \, reals \, risc \, \leq \, \frac{T_{calda}}{T_{calda} - T_{fredda}}$$



Un ciclo ideale è completamente reversibile:

- nessuna caduta di pressione per attrito;
- COP massimo
- il refrigerante fluisce a pressione costante attraverso il condensatore e l'evaporatore;
- la compressione è isoentropica;
- l'espansione è adiabatica.

La differenza principale tra ciclo ideale e ciclo reale sta nel processo di compressione: nel ciclo reale la compressione è solo adiabatica e l'entropia aumenta.

COP = 3

1 unità di energia utilizzata → 3 unità di energia ricavate

L'energia non viene "creata" ma "spostata" dalla sorgente fredda alla sorgente calda

- aria-acqua (aria a 2°C e acqua a 35°C) COP = 3
- **terra-acqua** / sonda geotermica (sonda a 0°C e acqua a 35°C) COP = 4
- **acqua-acqua** (con acqua di prelievo del calore a 10°C e fornitura d'acqua a 35°C) COP = 4.5

Modalità di alimentazione

Pompe di calore a compressione

Pompe di calore ad assorbimento

(Pompe di calore alimentate da motori a combustione interna)

Sorgente Utilizzata

Aria

Acqua

Terreno

Altri fluidi (cascami termici)

Modalità di compressione Pompe di calore a compressione

Sorgente Fredda: aria

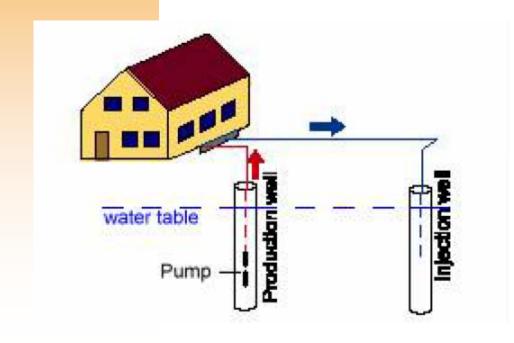
Molto diffusi nei climatizzatori con pompa di calore, sistemi split per appartamenti / uffici,....

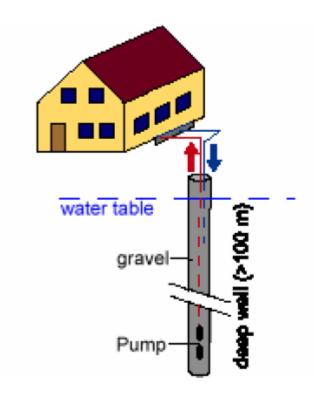
Sorgente Fredda: aria

Vantaggi: Sorgente fredda (aria) disponibile

Limiti

- Rendimenti proporzionali alle differenze di temperatura: nel periodo invernale la diminuzione della temperatura esterna riduce il rendimento effettivo. (discordanza di fase)


In alcuni casi il rendimento effettivo, con temperature molto rigide, diminuisce al di sotto dell'unità → convenienza del riscaldamento a effetto Joule (stufette elettriche)


- -Temperatura della sorgente fredda molto variabile
- -Possibile interruzione del funzionamento in caso di formazione i ghiaccio sullo scambiatore anche a temperature superiori a 0°C.

Sono necessari sistemi anti – ghiaccio che di norma prevedono l'inversione del ciclo con conseguente interruzione temporanea della "produzione" di calore e dispendio di energia

Sorgente Fredda: acqua

Sistema a due pozzi

Sistema a pozzo singolo coassiale

Sorgente Fredda: acqua

Parametri di valutazione

- -Livello della falda / acquifero
- a) Parametri idrogeologici:
- conducibilità idraulica K (m/s)
- porosità totale n ed efficace ne (adimensionale o %)
- b)Parametri termici:
- temperatura T (°Co°K)
- diffusività termica a (in m2/s,a sua volta funzione di conducibilità termica l,espressa in W/(m·K), e heat capacity cp, in J/(m3·K))
- c) Parametri fisico-chimici:
- conducibilità elettrica specifica
- pH
- Eh

Sorgente Fredda: acqua

Parametri di valutazione

- -Emungimento potenziale
- limiti caratteristiche chimico fisiche dell'acqua reimmessa

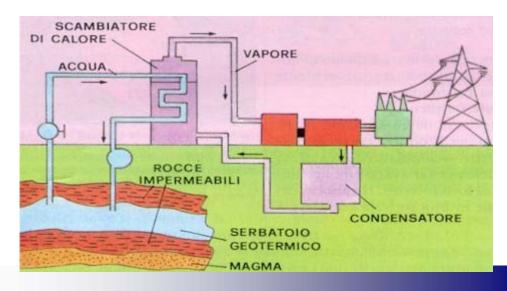
SCARICHI NEL SOTTOSUOLO (D.Lgs. 152/06

Art. 104 -SCARICHI NEL SOTTOSUOLO E NELLE ACQUE SOTTERRANEE

- 1. È vietato lo scarico diretto nelle acque sotterranee e nel sottosuolo.
- 2. In deroga a quanto previsto al comma 1, l'autorità competente, dopo indagine preventiva, può autorizzare gli scarichi nella stessa falda delle acque utilizzate per scopi geotermici, delle acque di infiltrazione di miniere o cave o delle acque pompate nel corso di determinati lavori di ingegneria civile, ivi comprese quelle degli impianti di scambio termico.

SCARICO IN ACQUE SUPERFICIALI (Tab. 3, All. 5 alla parte Terza del D.Lgs. 152/06: variazione di temperatura al massimo di 3 C tra monte e valle dello scarico nel corpo idrico-Valori da definire nel Piano di Tutela regionale)

SCARICO IN FOGNATURA BIANCA O MISTA


Sorgente Fredda: terreno

GEOTERMIA

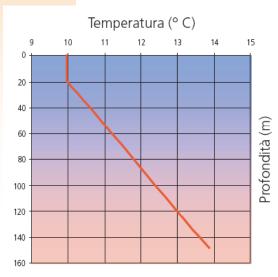
Sfruttamento delle sorgenti termiche presenti nel terreno

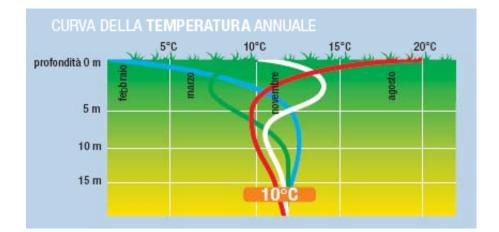
-Tradizionale (es Larderello): sfruttamento del calore endogeno della terra per la produzione di calore ed energia elettrica

Sorgente Fredda: terreno

GEOTERMIA

-A bassa entalpia

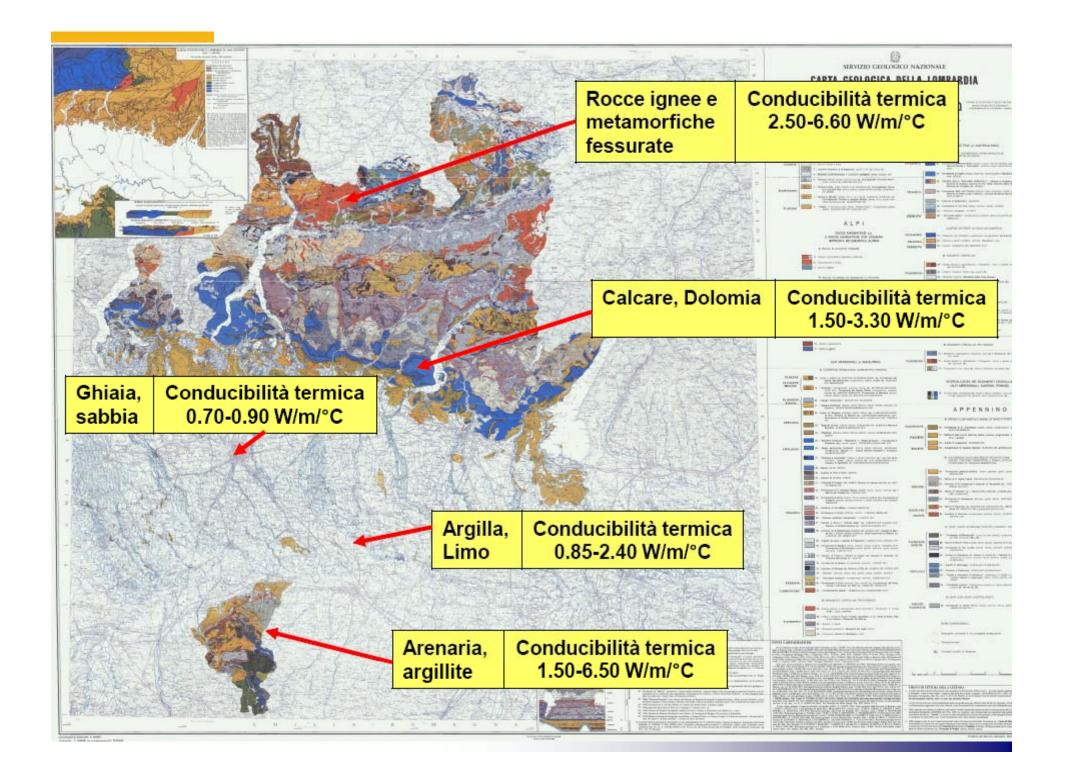

Utilizzo del sottosuolo come "serbatoio termico" dal quale estrarre calore durante la stagione invernale ed al quale cederne durante la stagione estiva.


Sorgente Fredda: terreno

Parametri di valutazione

- Caratteristiche chimico fisiche del terreno:
 - curva di temperatura estiva / invernale

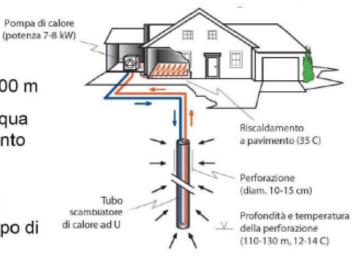
Sorgente Fredda: terreno


Parametri di valutazione

- Caratteristiche chimico fisiche del terreno:
 - curva di temperatura estiva / invernale
 - caratteristiche termiche del terreno

Tipo di materiale	Conduttività termica [W/(m K)]	Potenza specifica assorbita (W/m) (F _{sonda} = 13 cm)
Rocce incoerenti secche	<1,5	20
Ghiaia o sabbia (secche)	0,4	<20
Argilla, limo (umidi)	1,7	30-40
Rocce sature di acqua	1,5-3,0	50-65
Arenarie e conglomarati	2,3	55-65
Calcare massiccio	2,8	45-60
Gneiss	2,9	60-70
Basalto	1,7	35-55
Granito	3,4	55-65

Sorgente Fredda: terreno


Sonde geotermiche

Lunghezza: 20 - 300 m

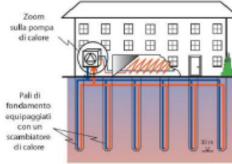
Riscaldamento, acqua calda, raffreddamento

Dimensionamento:

- geologia locale, tipo di terreno
- · acqua sotterranea
- · uso, tipo di sistema
- · ecc.

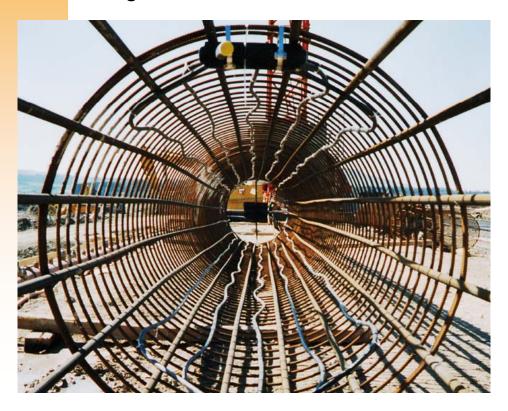
Sorgente Fredda: terreno

Sorgente Fredda: terreno


Pali energetici

Pali di fondazione con scambiatori di calore

Riscaldamento, acqua calda, raffreddamento


Spesso simili allo stoccaggio stagionale di calore nel terreno

Sorgente Fredda: terreno

Svizzera Energia 2007

Sorgente Fredda: terreno

Collettori orizzontali

Tubi interrati fino a 3 m di profondità

Riscaldamento, acqua calda, raffreddamento

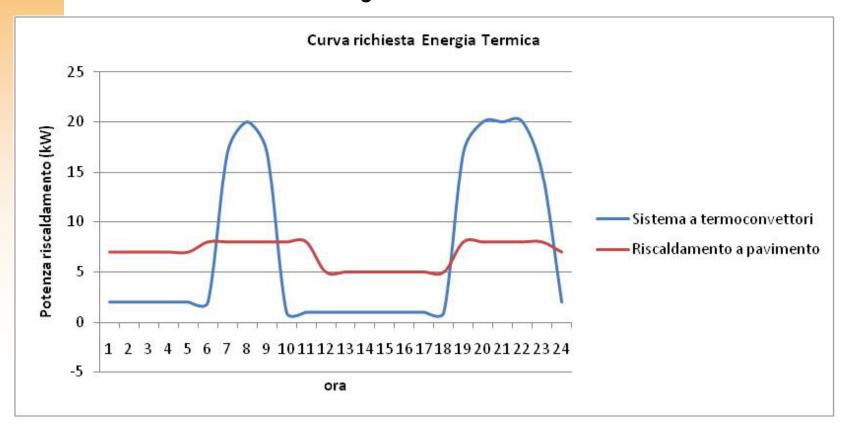
Influenza della meteo, richiede grandi superfici

=> sempre meno impiegato

Applicazioni

Riscaldamento (bassa temperatura)

Produzione ACS


Climatizzazione Estiva

- 1. Definizione del fabbisogno termico
- 2. Calcolo delle producibilità dell'impianto
- 3. Dimensionamento dell'impianto
- 4. Valutazioni economiche

1. Definizione del fabbisogno termico

2. Calcolo Producibilità Impianto e dimensionamento

COP = reale 3,1

Potenza elettrica Pompa di calore = 2,6 kW

Potenza in riscaldamento = 8 kW

Sonda Geotermica = tubo a doppia U PET

Pozzo = 120 m

Investimento					
Pompa di calore con Sonda Geotermica					
Perforazione e posa in opera sonda	€	7.000			
Pompa di calore	€	7.000			
Installazione, sistema di regolazione e produzione ACS		5.000			
Totale	€	19.000			

Investimento				
Sistema di riscaldamento a bassa temperatura e raffrescamento estivo				
Caldaia a condensazione con produzione di ACS	€	5.000		
Impianto di raffrescamento estivo con pompa di calore aria/acqua		7.000		
Totale	€	12.000		

	Pompa di calo	re					
Costi	esercizio risca	Idamento					
		Sonda Geotermica	Caldaia a gas				
Superficie ambiente	m2	120					
Energia termica di riscaldamento	kWht/(m2 x	110					
Consumo medio annuo	kWht/anno	13.200					
Consumo medio annuo	kcal/anno	11.352.000					
Rendimento medio caldaia gas	%		97%				
Consumo stimato gas	m3/anno		1.419				
Costo Metano	€ /m3		0,65				
			€ 922,1				
Rendimento Pompa di calore con							
Sonda	COP	4					
Consumo Energia Elettrica	kWh/anno	3.300					
Costo Medio Energia Elettrica	€/kWh	0,18					
		€ 594,0					

	Pompa di calc	ore				
Costi e	sercizio raffre	scamento				
		Sonda Geotermica	PDC Aria - Acqua			
Superficie ambiente	m2	120				
Consumo medio annuo	kWhf/anno	5.000				
Rendimento medio pompa di calore						
aria - acqua	COP		2,5			
Consumo Energia Elettrica	kWh/anno		2.000			
Costo Medio Energia Elettrica	€/kWh		0,18			
			€ 360,0			
Rendimento Pompa di calore con						
Sonda	COP	3,7				
Consumo Energia Elettrica	kWh/anno	1.351				
Costo Medio Energia Elettrica	€/kWh	0,18				
		€ 243,2				

Pompa di Calore								
		Sond	a Geotermica	Calda	ia + PDC	Diffe	Differenza	
Investimento	€	€	19.000	€	12.000	€	7.000	
Costi Energia per riscaldamento	€/anno	€	594,0	€	922,1			
Costi Energia per raffrescamento	€anno	€	243,2	€	360,0			
Totale Costi Energia	€/anno	€	837,2	€	1.282,1	-€	445	

Dimensionamento

4. Valutazioni Economiche

Pompa di calore - Svizzera							
		Sono	la Geotermica	Calda	aia + PDC	Diffe	erenza
Investimento	€	€	19.000	€	12.000	€	7.000
Costi Energia per riscaldamento	€/anno	€	247,5	€	993,0		
Costi Energia per raffrescamento	€anno	€	101,4	€	150,0		
Totale Costi Energia	€anno	€	348,9	€	1.143,0	-€	794

Modalità di compressione

Pompe di calore a compressione

Pompe di calore ad assorbimento

(Pompe di calore alimentate da motori a combustione interna)

Sorgente Utilizzata

Aria

Acqua

Terreno

Altri fluidi

Modalità di compressione

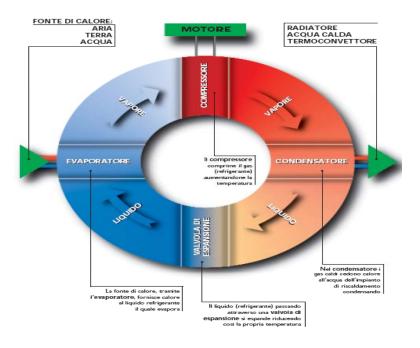
Pompe di calore a compressione

Pompe di calore ad assorbimento

(Pompe di calore alimentate da motori a combustione interna)

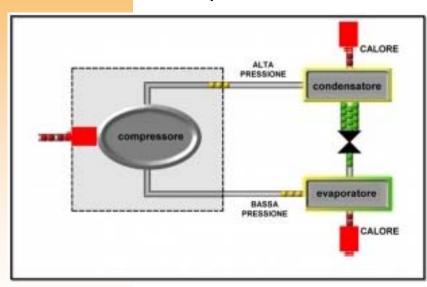
Sorgente Utilizzata

Aria

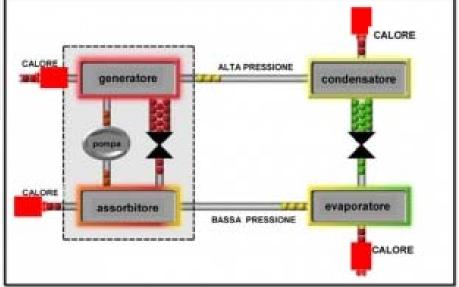

Acqua

Terreno

Altri fluidi

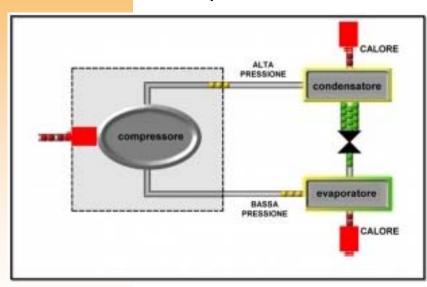


Pompa di calore ad assorbimento

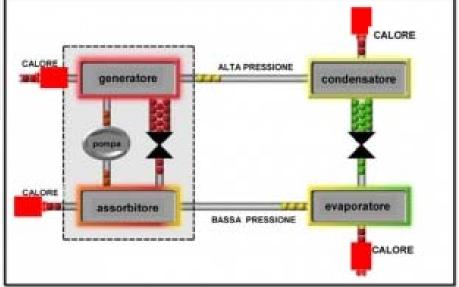

Pompa di calore ad assorbimento

Assorbitore: il fluido frigorigeno viene assorbito dal fluido assorbente, rendendolo nuovamente liquido.

Generatore: la soluzione liquida dei fluidi frigorigeno ed assorbente viene riscaldata nel generatore per mezzo di un bruciatore a gas, separando il fluido refrigerante, che evapora aumentando di temperatura e di pressione.


Compressione: il fluido frigorigeno allo stato gassoso e a bassa pressione, proveniente dall'evaporatore, viene portato ad alta pressione; nella compressione si riscalda assorbendo una certa quantità di calore.

robur


Pompa di calore ad assorbimento

Assorbitore: il fluido frigorigeno viene assorbito dal fluido assorbente, rendendolo nuovamente liquido.

Generatore: la soluzione liquida dei fluidi frigorigeno ed assorbente viene riscaldata nel generatore per mezzo di un bruciatore a gas, separando il fluido refrigerante, che evapora aumentando di temperatura e di pressione.

Compressione: il fluido frigorigeno allo stato gassoso e a bassa pressione, proveniente dall'evaporatore, viene portato ad alta pressione; nella compressione si riscalda assorbendo una certa quantità di calore.

robur

Pompa di calore ad assorbimento

Descrizione Ciclo: soluzioni di refrigerante ed assorbente

- Riscaldamento soluzione nel generatore di calore (o con calore di recupero) → separazione soluzione, il refrigerante evapora
- 2. Condensatore : refrigerante viene fatto condensare (calore ceduto alla sorgente calda)
- 3. Espansione: refrigerante viene fatto passare attraverso opportuni restrittori → diminuisce pressione e temperatura
- 4. Evaporatore: il refrigerante assorbe calore dal fluido dalla sorgente fredda
- 5. Assorbitore: il refrigerante viene assorbito dal fluido assorbente

Pompa di calore ad assorbimento

Acqua e Bromuro di Litio

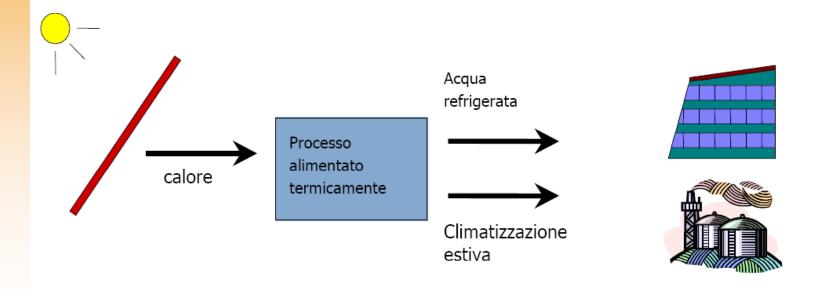
Acqua e Bromuro di Litio				
Taglia	4.5; 17.5 kW ~23 MW freddi			
COP	0.7 / 1.1			
Alimentazi	Acqua calda; Vapore; Fumi; Fiamma diretta			
Utilizzo	Raffrescamento (modelli con scambio invernale)			

Pompa di calore ad assorbimento

Acqua e Ammoniaca

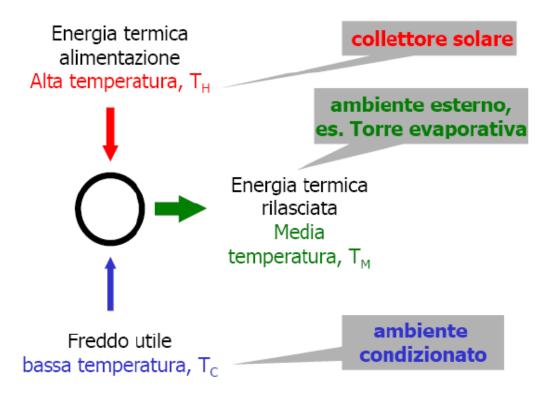
Acqua e Ammoniaca					
Taglia	10; 17kW ~525 kW (freddo) ; 35-1380 kW (caldo)				
COP	0.6 -0.95 (freddo); 1.4-1.7 (caldo)				
Alimentazione	Fiamma diretta (Olio diatermico)				
Utilizzo	Raffrescamento, Riscaldamento, Cons. Cibi				

Analisi Economica


Pompa di calore ad assorbimento

Struttura					
Potenze richieste					
Riscaldamento	kW	400			
Raffrescamento	kW	400			
Produzione ACS	kW	150			

	Soluzioni a confronto	Consumo Energia Elettrica	consumo gas metano	Costi di gestione annui	Differenza Costi gestione	Differenza Investimento
		kWh/anno	Nm3/anno	€anno	€anno	€
Centrale Termica con caldaia a condensazione e chiller tradizionale elettrico		68.072	77.292	49.667	-	-
b) Impianto a pompa di calore aria-acqua di tipo tradizionale elettrico		278.743	14.020	55.813	6.146	-9.760
c) Impianto con pompa di calore geotermica elettrica		192.272	14.020	39.552	-10.115	285.000
d) Impianto con pompa di calore geotermica ad assorbimento		14.474	81.843	40.247	-9.420	190.000
e) Impianto con pompa di calore aria-acqua ad assorbimento		24.477	86.355	39.315	-10.352	86.000



Principio di Funzionamento

Principio di Funzionamento

	Cicli chiusi Produzione acqua refrigerata		Cicli aperti Condizionamento aria diretto		
Tipo di sorbente	solido	liquido	solido	liquido	
Tipici materiali in uso	Acqua - Silicagel, Ammoniaca – Sali A.	Acqua - LiBr Ammoniaca - acqua	Acqua - Silicagel, Acqua – Cl di Litio	Acqua –Cloruro di Calcio Acqua – Cloruro di Li	
Tecnologie disponi- bili sul mercato	Macchine ad Adsorbimento	Macchine ad Assorbimento	Raff. Evaporativo con Ad-assorbimento	-	
Potenza frigorifera [kW]	7 - 430 kW	4.5 kW fino >5 MW	20 kW - 350 kW (pro Modul)	-1	
Produttori	2 produttori giapponesi	USA, Asia; solo poche piccola capacità	ca. 5 produttori di rotori; molti UTA		
Efficienza (COP)	0.3-0.7	0.6-0.75 (1-effetto) < 1.2 (2-effetto)	0.5 fino >1	fino >1	
Tipiche temperature di alimentazione		80-110°C (1-effetto) 130-160°C (2-effetto)	45-95°C	45-70°C	

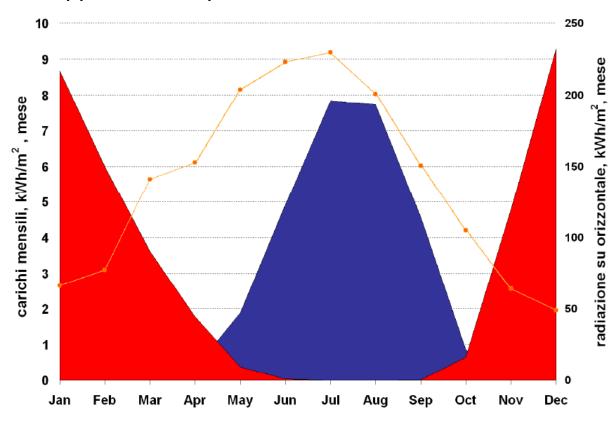
Assorbimento: processo di penetrazione di

- -un gas in un solido o in un liquido
- -un liquido in un solido quando la sostanza assorbita <u>permea uniformemente tutta</u> <u>la massa</u> del corpo assorbente.

Adsorbimento: processo attraverso il quale un gas viene fissato <u>sulla superficie</u> di un solido o più raramente di un liquido.

Adsorbimento Condensator Cooling water-eircuit Heat exchanger 1 and 2 Silica gel Packing Heating water-circuit Chilling water-circuit

Evaporator


Adsorbimento

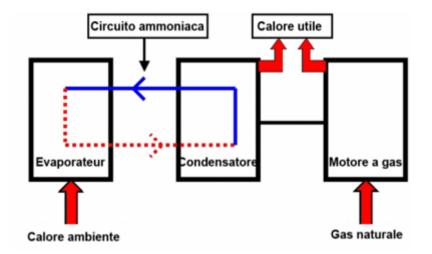
Quando l'assorbente nel primo compartimento è rigenerato utilizzando acqua calda da una fonte di calore esterna (i collettori solari), l'assorbente nel secondo compartimento (adsorbitore) adsorbe il vapore d'acqua proveniente dall'evaporatore.

L'acqua presente nell'evaporatore, recuperando calore dal circuito di acqua esterna, si trasforma nella fase gassosa e avviene la produzione di freddo.

Sovrapposizione – producibilità e richiesta

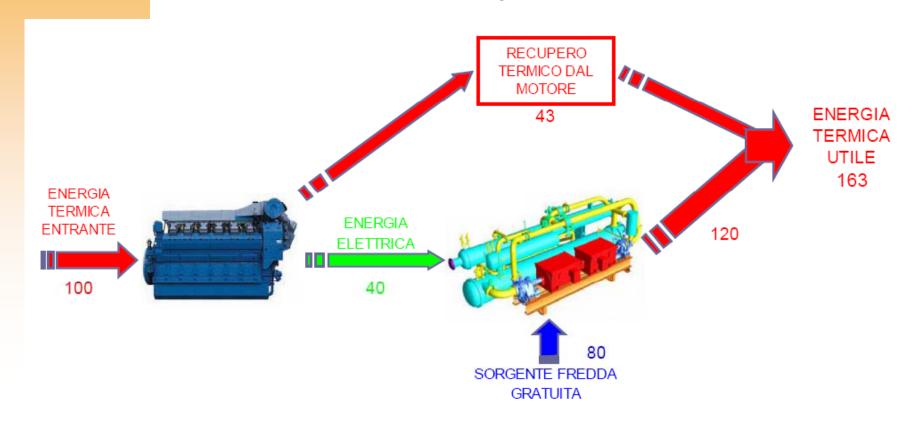
Modalità di compressione

Pompe di calore a compressione


Pompe di calore ad assorbimento

(Pompe di calore alimentate da motori a combustione interna)

Sorgente Utilizzata Aria Acqua Terreno Altri fluidi



Pompa di calore con motori a gas

Pompa di calore con motori a gas

