Secondo appello

03 luglio 2012

- 1. Risolvere i seguenti esercizi
- a. (4pt) Enunciare la definizione di punto di massimo locale per una funzione $f: A \subseteq \mathbb{R} \to \mathbb{R}$. Data la funzione $f(x) = x^2 \ln x$
 - 1. Verificare che f(x) ha esattamente un punto x_0 di estremo locale e determinarne la natura.
 - 2. Stabilire se il punto x_0 è anche di estremo globale. Giustificare la risposta.
- b. (3pt) Data la matrice $\mathbf{A} = \begin{pmatrix} -3 & 0 & 1 \\ 0 & -2 & 1 \\ 1 & 2 & 0 \end{pmatrix}$, verificare che \mathbf{A} è invertibile. Dire inoltre,

giustificando la risposta quale tra le matrici $\mathbf{B} = \begin{pmatrix} -\frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{8} & -\frac{1}{8} & -\frac{3}{8} \\ \frac{1}{4} & \frac{3}{4} & \frac{3}{4} \end{pmatrix}$ e

 $\mathbf{C} = \begin{pmatrix} -\frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{8} & -\frac{1}{8} & \frac{3}{8} \\ \frac{1}{4} & \frac{3}{4} & \frac{3}{4} \end{pmatrix}$ sia l'inversa di \mathbf{A} .

c. (3pt) Data la funzione $f(x) = \frac{\ln x}{x^2}$, scrivere una sua generica primitiva G. Calcolare poi l'integrale improprio (generalizzato) $\int_1^{+\infty} f(x) \, dx$.

- 2. Un bene di valore A = 12.500, 00 € viene concesso in leasing. Il cliente dovrà pagare 3 canoni anticipati e 5 canoni trimestrali posticipati, oltre ad un premio di estinzione E = 8.000, 00 € (da versare alla scadenza del contratto tra due anni da oggi). Il contratto è stipulato con un tasso annuo effettivo i = 8,46% ed i canoni sono di importo costante.
- a. (2pt) Enunciare la condizione di chiusura per un contratto di leasing (si consideri la presenza simultanea di un anticipo in contanti B e di r canoni anticipati oltre ad n canoni posticipati). Calcolare il tasso trimestrale (i_4) equivalente al tasso contrattuale i.
- b. (3pt) Calcolare l'importo del canone che dovrà essere versato e l'anticipo pagato.
- c. (3pt) Scrivere i flussi di cassa generati dal contratto per la società di leasing e rappresentare graficamente il DCF dell'operazione finanziaria.
- d. (3pt) Il contratto prevede 150,00 € di spese di istruttoria da corrispondere alla sottoscrizione e 5,50 € di spese di incasso per ogni canone posticipato. Si dica, motivando la risposta, se il TAEG del contratto superi il 9,00% annuo.

- 3. (Standard) Risolvere i seguenti esercizi:
 - a. (6pt) Data la funzione

$$f\left(x\right) = \frac{2x+6}{x^2}$$

- 1. Determinarne il dominio, il segno e l'intersezione con gli assi cartesiani. Individuare, calcolando i limiti alla frontiera, eventuali asintoti (orizzontali, verticali od obliqui) della funzione.
- 2. Determinarne gli eventuali punti stazionari e studiarne la monotonia (il crescere e decrescere), individuando eventuali massimi e/o minimi.
- 3. Trovare eventuali punti di flesso, indicare in quali sottoinsiemi del dominio risulta concava e tracciare un grafico qualitativo della funzione.
- b. (5pt) Sono noti i tassi spot $h^{(0)}(0,1) = 2,80\%$ e $h^{(0)}(0,2) = 3,05\%$ ed il tasso forward $h^{(0)}(1,3) = 2,95\%$. Calcolare il prezzo di non arbitraggio (cioé coerente con la struttura a termine descritta) di un titolo che pagherà cedole di importo $10,00 \in$ alle scadenze t = 1,2,3 e rimborserà 1.000,00 alla maturità T = 3.

- 3. (Challenge) Risolvere i seguenti esercizi.
 - a. (3pt) Il mercato è caratterizzato da una struttura a termine piatta con i=4,56%. Determinare la duration dell'operazione finanziaria (espressa in anni)

b. (2pt) Determinare il numero delle soluzioni del sistema lineare

$$\begin{bmatrix} \frac{1}{3} & \frac{1}{2} & \frac{2}{3} \\ -6 & -9 & -12 \\ 2 & 3 & 4 \end{bmatrix} \mathbf{x} = \begin{bmatrix} -\frac{2}{3} \\ 12 \\ -4 \end{bmatrix}$$

- c. (6pt) Data la funzione obiettivo $F(x,y,z)=2x^3-4x^2+y^2+2xy+z^3-12z$
 - 1. Calcolare il gradiente di F;
 - 2. Calcolare gli eventuali punti stazionari della funzione;
 - 3. Dopo avere calcolato la matrice Hessiana in un generico punto (x, y, z), determinare se il punto di coordinate $(\frac{5}{3}, -\frac{5}{3}, 2)$ è un estremante della funzione.

Secondo appello

31 maggio 2012 (SOLUZIONI)

- 1. (a) 1. La funzione f(x) è definita nel dominio $A = (0, +\infty)$ ed è derivabile in tutto A. La sua derivata è $f'(x) = x + 2x \ln x = x (1 + 2 \ln x)$. Si ha f'(x) = 0 quando $1 + 2 \ln x = 0$, ovvero per $x = e^{-1/2}$. Si ha poi f'(x) < 0 per $0 < x < e^{-1/2}$ e f'(x) > 0 per $x > e^{-1/2}$. Il punto $x = e^{-1/2}$ è quindi di minimo locale.
 - 2. Il dominio A è un intervallo. La funzione f(x) è sempre decrescente prima di $x = e^{-1/2}$ e sempre crescente dopo $x = e^{-1/2}$. Il punto $x = e^{-1/2}$ è quindi anche di minimo globale.
 - (b) Poiché det $\begin{pmatrix} -3 & 0 & 1 \\ 0 & -2 & 1 \\ 1 & 2 & 0 \end{pmatrix} = 8 \neq 0$, la matrice \mathbf{A} è invertibile. Per determinare quale sia la sua inversa tra le alternative proposte, sono corretti vari procedimenti, tra cui almeno i due seguenti (nei quali non è necessario calcolare l'inversa \mathbf{A}^{-1}).
 - * Poiché \mathbf{B}, \mathbf{C} si differenziano solo per il termine situato nel posto di indice 2,3, basta ricavare il termine corrispondente dell'inversa \mathbf{A}^{-1} . Si ha $\mathbf{A}^{T} = \begin{pmatrix} -3 & 0 & 1 \\ 0 & -2 & 2 \\ 1 & 1 & 0 \end{pmatrix}$. Il complemento algebrico del termine situato nel posto di

indice 2,3 è $(-3) \cdot (-1) = 3$, che diviso per det $\mathbf{A} = 8$ porge il risultato $\frac{3}{8}$. Quindi la risposta corretta è \mathbf{C} .

- ** Deve essere $\mathbf{A}\mathbf{A}^{-1} = I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. Svolgendo il prodotto $\mathbf{A}\mathbf{B}$, nel posto di indice 2,3 la matrice ottenuta recherà il termine $\frac{3}{4} + \frac{3}{4} = \frac{3}{2}$. Mentre svolgendo il prodotto $\mathbf{A}\mathbf{C}$, nel posto di indice 2,3 la matrice ottenuta recherà il termine $-\frac{3}{4} + \frac{3}{4} = 0$. Quindi la risposta corretta è \mathbf{C} .
- (c) Si ha $G(x)=\int \frac{\ln x}{x^2}\,dx=\int (\ln x)\,\frac{1}{x^2}\,dx$. Integrando per parti, si ottiene $G(x)=\ln x\left(-\frac{1}{x}\right)-\int \frac{1}{x}\left(-\frac{1}{x}\right)\,dx=-\frac{\ln x}{x}+\int \frac{1}{x^2}\,dx=-\frac{\ln x}{x}-\frac{1}{x}+C.$ Si ha quindi $\int_1^{+\infty}f(x)\,dx=\lim_{k\to+\infty}\int_1^k\frac{\ln x}{x^2}\,dx=\lim_{k\to+\infty}\left[-\frac{\ln x}{x}-\frac{1}{x}\right]_1^k=\lim_{k\to+\infty}\left(-\frac{\ln k}{k}-\frac{1}{k}+1\right)=1.$
- 2. (a) Il tasso periodale del contratto è $i_4=2,05\%$ circa.
 - (b) L'importo del canone deve essere tale che

$$12.500 = 3 \times C + C \times a_{5|2,05\%} + \frac{8000}{(1+2,05\%)^8}$$

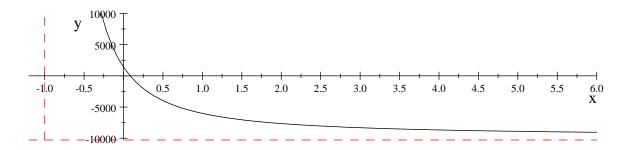
da cui si ricava che C=739,467 € circa. L'anticipo che dovrà essere pagato è quindi 2.218, 40 €.

(c) L'operazione finanziaria genera, per il creditore i flussi di cassa

epoca	flussi
(trimestre)	(€)
0	-10.281,60
1	739,467
2	739, 467
3	739, 467
4	739, 467
5	739, 467
6	0
7	0
8	8.000,000

Si tratta di un investimento puro, il cui DCF è la funzione

$$G\left(x\right) = -10.281,60 + \frac{739,467}{\left(1+x\right)^{\frac{1}{4}}} + \frac{739,467}{\left(1+x\right)^{\frac{2}{4}}} + \frac{739,467}{\left(1+x\right)^{\frac{3}{4}}} + \frac{739,467}{\left(1+x\right)^{\frac{4}{4}}} + \frac{739,467}{\left(1+x\right)^{\frac{5}{4}}} + \frac{8.000}{\left(1+x\right)^{\frac{8}{4}}}$$



(d) Aggiungendo gli oneri descritti, il contratto prevede i flussi di cassa

epoca	flussi
(trimestre)	(€)
0	-10.131,60
1	744,967
2	744,967
3	744,967
4	744,967
5	744,967
6	0
7	0
8	8.005, 500

Osservando il problema dal punto di vista del creditore (primo flusso di cassa negativo) e calcolando il $NPV\left(0,09\right)=+99,791>0$, si deduce che il TAEG è maggiore del 9%.

3. (St) 1. La funzione è definita nell'insieme $(-\infty,0) \cup (0,+\infty)$, non interseca l'asse y e interseca l'asse x nel punto (-3,0). Risulta inoltre positiva per $x \in (-3,0) \cup (0,+\infty)$, negativa altrove. Poiché agli estremi del dominio ha limite

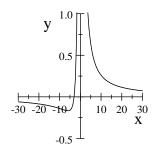
$$\lim_{x \to +\infty} f(x) = 0^{+}$$

$$\lim_{x \to 0^{\pm}} f(x) = +\infty$$

$$\lim_{x \to -\infty} f(x) = 0^{-}$$

presenta quindi un asintoto orizzontale y=0 per $x\to\pm\infty$ ed un asintoto verticale in x=0.

- 2. La derivata prima risulta essere $f'(x) = \frac{-2(6+x)}{x^3}$, definita in tutto il dominio della funzione primitiva. Poiché la funzione risulta crescente (f'(x) > 0) nell'intervallo $x \in (-6,0)$ e decrescente (f'(x) < 0) nell'intervallo $(-\infty, -6)$ e nell'intervallo $(0, +\infty)$, si deduce che x = -6 è un punto di minimo almeno locale (anche globale).
- 3. La derivata seconda risulta essere $f''(x) = \frac{4x + 36}{x^4}$. Si ha un punto di flesso in x = -9 con f concava nell'intervallo $(-\infty, -9)$. Un grafico qualitativo è



- (e) In base alla struttura a termine disponibile, il prezzo di non arbitraggio del titolo può essere espresso come $P=10\times v^{(0)}\left(0,1\right)+10\times v^{(0)}\left(0,2\right)+1.010\times v^{(0)}\left(1,3\right)\times v^{(0)}\left(0,1\right)$. Poiché i prezzi spot sono $v^{(0)}\left(0,1\right)=0,9728$ e $v^{(0)}\left(0,2\right)=0,9417$ ed il prezzo forward è $v^{(0)}\left(1,3\right)=0,9435$, si ricava che il prezzo è P=946,14 \in .
- 3. (Ch) (a) Risulta

$$D = \frac{\frac{4}{12} \times 75 \times (1,0456)^{-\frac{4}{12}} + \frac{10}{12} \times 75 \times (1,0456)^{-\frac{10}{12}} + \frac{16}{12} \times 10075 \times (1,0456)^{-\frac{16}{12}}}{75 \times (1,0456)^{-\frac{4}{12}} + 75 \times (1,0456)^{-\frac{10}{12}} + 10075 \times (1,0456)^{-\frac{16}{12}}} = 1,3219 \text{ anni.}$$

(b) La matrice dei coefficienti risulta avere almeno rango 1. Considerando le orlate

della sottomatrice $\mathbf{B} = [2]$, corrispondente all'elemento di posizione 3, 1, si ottiene

$$\det \mathbf{C}_1 = \det \begin{bmatrix} -6 & -9 \\ 2 & 3 \end{bmatrix} = 0$$

$$\det \mathbf{C}_2 = \det \begin{bmatrix} \frac{1}{3} & \frac{1}{2} \\ 2 & 3 \end{bmatrix} = 0$$

$$\det \mathbf{C}_3 = \det \begin{bmatrix} -6 & -12 \\ 2 & 4 \end{bmatrix} = 0$$

$$\det \mathbf{C}_4 = \det \begin{bmatrix} \frac{1}{3} & \frac{2}{3} \\ 2 & 4 \end{bmatrix} = 0$$

quindi la matrice ha rango 1. Poiché il vettore \mathbf{b} è la terza colonna della matrice dei coefficienti, moltiplicata per -1, la matrice completa $(\mathbf{A}|\mathbf{b})$ avrà lo stesso rango della matrice dei coefficienti. Il sistema ammette quindi infinite soluzioni con due gradi di libertà.

- (c) 1. Il gradiente di F(x, y, z) è $\nabla F(x, y, z) = \begin{bmatrix} 6x^2 8x + 2y & 2x + 2y & 3z^2 12 \end{bmatrix}$
 - 2. I punti stazionari sono le soluzioni del sistema

$$\begin{cases} 6x^2 - 8x + 2y = 0\\ 2x + 2y = 0\\ 3z^2 - 12 = 0 \end{cases}$$

ovvero
$$P_1 = \left[x = \frac{5}{3}, y = -\frac{5}{3}, z = -2\right], P_2 = \left[x = 0, y = 0, z = -2\right], P_3 = \left[x = \frac{5}{3}, y = -\frac{5}{3}, z = 2\right], P_4 = \left[x = 0, y = 0, z = 2\right]$$

3. La matrice Hessiana di F(x, y, z) è:

$$\nabla^2 F(x, y, z) = \begin{bmatrix} 12x - 8 & 2 & 0 \\ 2 & 2 & 0 \\ 0 & 0 & 6z \end{bmatrix}$$

Poiché il punto assegnato è un punto stazionario, la matrice Hessiana nel punto ha valore

$$\nabla^2 F\left(\frac{5}{3}, -\frac{5}{3}, 2\right) = \begin{bmatrix} 12 & 2 & 0\\ 2 & 2 & 0\\ 0 & 0 & 12 \end{bmatrix}$$

e la catena dei segni è $H_1 = 12 > 0$; $H_2 = 20 > 0$; $H_3 = 240 > 0$, il punto è di minimo almeno relativo forte.