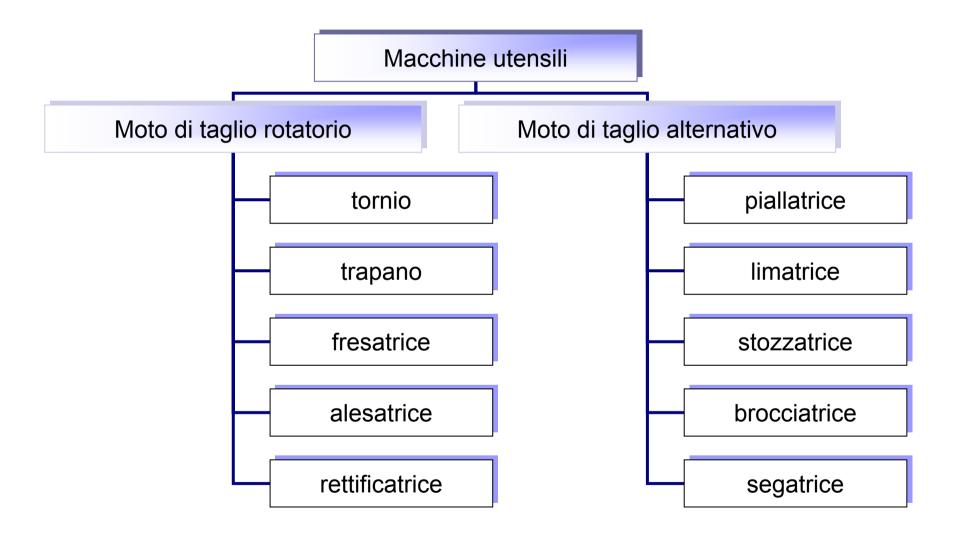
Asportazione di truciolo

L'asportazione di truciolo

- Per asportazione di truciolo (taglio e rimozione del materiale) si lavorano a freddo grezzi di fonderia e semilavorati di varia provenienza (laminati, stampati, fucinati, profilati, estrusi, ...)
- Vengono utilizzate allo scopo macchine utensili che si differenziano storicamente in funzione del tipo dell'attrezzo (utensile) utilizzato nella lavorazione



Macchine e utensili

- Macchine
 - Caratteristiche tecniche
 - □ Componenti
 - ☐ Stato dell'arte
 - □ Varianti CN
 -

- Utensili
 - □ Classificazione
 - □ Tipi
 - □ Tabelle di riferimento
 - □ Angoli caratteristici
 - □ Taglienti
 - □ Usura

Tornitura

Tornitura

- La tornitura ha lo scopo di ottenere:
 - □ superfici di rivoluzione esterne e interne
 - ☐ filettature esterne e interne
 - □ superfici piane (dette di "sfacciatura")
 - □ superfici zigrinate
- È un'operazione realizzata su torni di varie fogge e complessità, oggi ampiamente diffusi, come tutte le macchine utensili, in versione CN

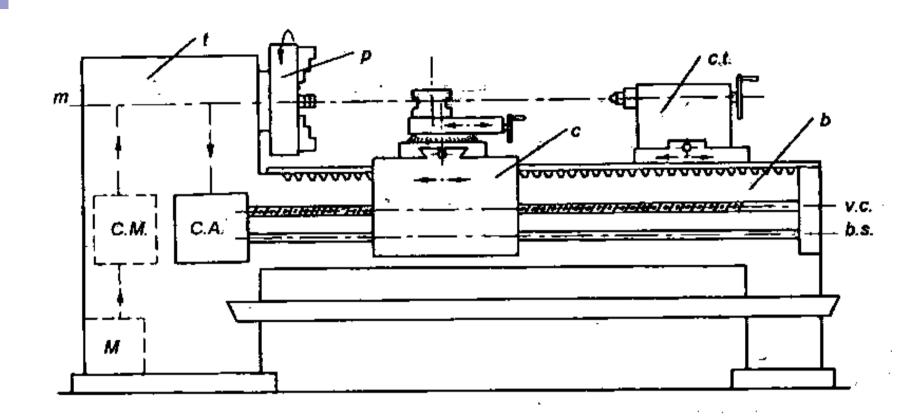


Fig. 11.1 - Schema del tornio parallelo.

b = bancale, t = testa, m = mandrino, p = piattaforma, c = carrello portautensile, c.t. = controtesta, v.c. = vite conduttrice, b.s. = barra scanalata, M = motore elettrico, C.M. = cambio velocità mandrino, C.A. = cambio velocità avanzamenti

Moti di tornitura

- Moto di taglio
 - □ Rotatorio continuo del pezzo
 - ☐ Misurato con la velocità di taglio v in m/min
- Moto di alimentazione o di avanzamento
 - Normalmente rettilineo e continuo dell'utensile, in un piano passante per l'asse di tornitura, parallelo (tornitura cilindrica) o perpendicolare (sfacciatura) rispetto all'asse di tornitura
 - ☐ Misurato con l'avanzamento a in mm/giro
- Moto di appostamento
 - Rettilineo dell'utensile. Posiziona l'utensile prima dell'inizio della lavorazione
 - ☐ Misurato con la profondità di passata p in mm
- Moto di lavoro
 - Elicoidale risultante dal moto di taglio e di alimentazione

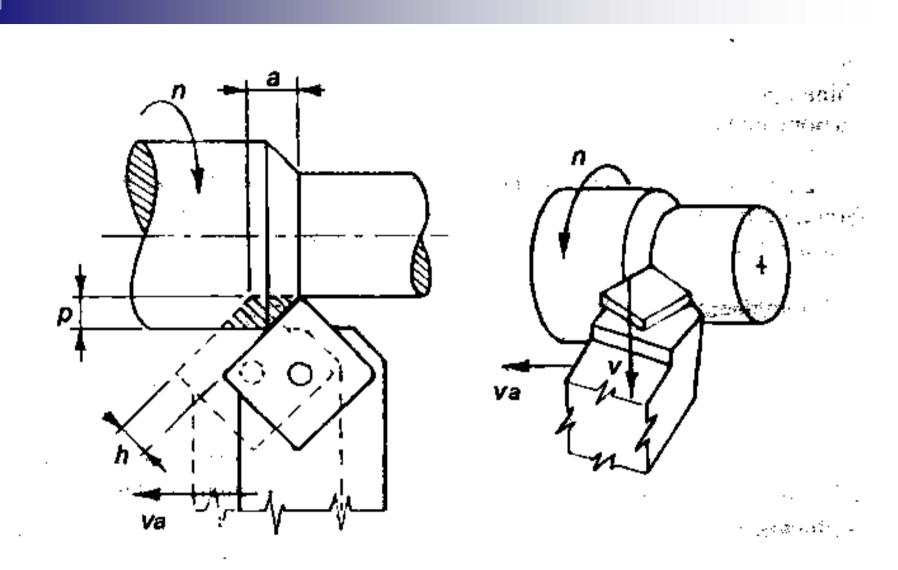


Fig. 1.1 - Schema di un'operazione di tornitura e relativi parametri di taglio.

Tornitura cilindrica esterna

- Utensile con moto di alimentazione parallelo all'asse di tornitura
- Velocità di taglio:

```
v = (\pi Dn)/1000 (m/min)
```

- D = diametro della superficie lavorata (mm)
- n = velocità angolare del pezzo (giri/min)

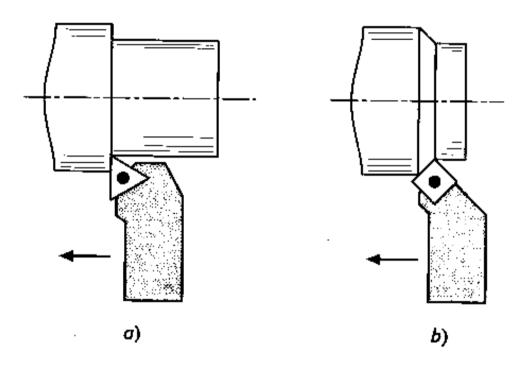
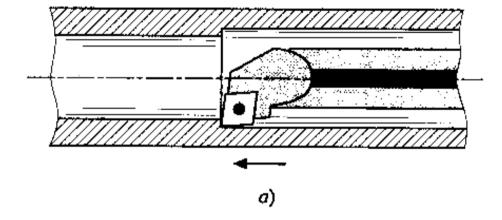
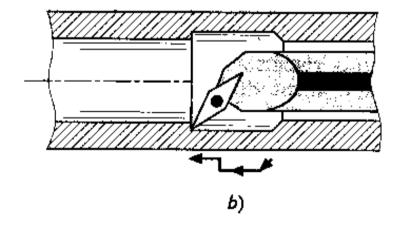


Fig. 9-1 Operazione di tornitura cilindrica esterna.

- a) con utensile a coltello
- $\chi = 90^{\circ}$; b) con utensile sgrossatore $\chi = 45^{\circ}$.

Tornitura piana esterna ("sfacciatura")

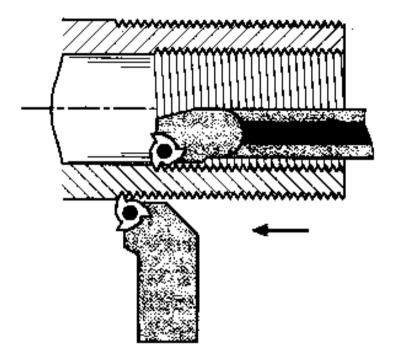

- Permette di ottenere superfici piane perpendicolari all'asse di tornitura con un moto dell'utensile perpendicolare a tale asse
- Affinché la qualità della finitura superficiale rimanga la stessa in ogni punto è necessario che la velocità di taglio rimanga costante
- Ciò è possibile solo se la velocità di rotazione del mandrino può variare in modo continuo come nei torni a CN

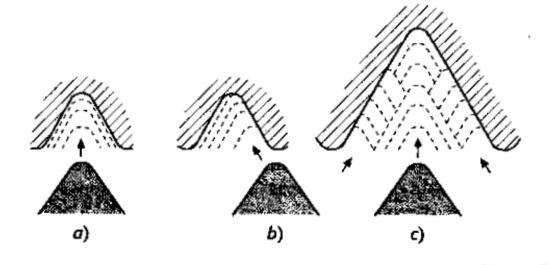


Tornitura interna

- In pratica si dà forma a superfici interne allargando fori già presenti nel pezzo in lavorazione
- Lo stelo dell'utensile deve essere scelto opportunamente per l'ingombro e la rigidezza in particolare quando i fori hanno un basso rapporto diametro/lunghezza

Fig. 9-4 Esempio di tomitura interna:

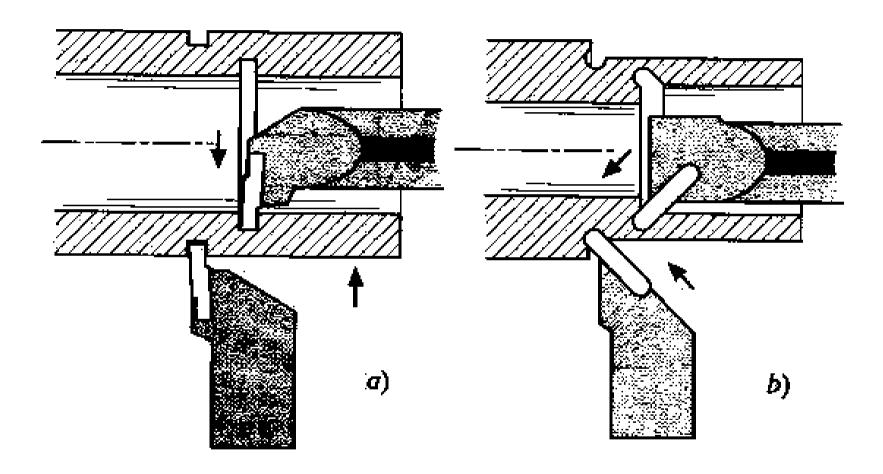

- a) cilindratura;
- b) realizzazione di una superficie con generatrice a tratti rettilinei.

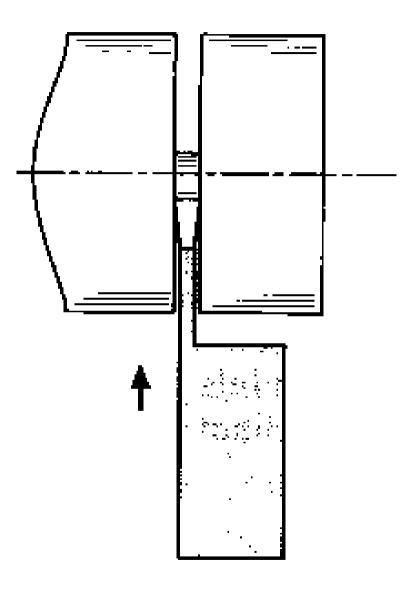

Filettature interne ed esterne

- Per l'esecuzione di una filettatura è necessario che il moto di avanzamento abbia velocità pari al passo della filettatura
- La profondità di passata dipende dalla profondità del filetto e dalla sua realizzazione in una o più passate

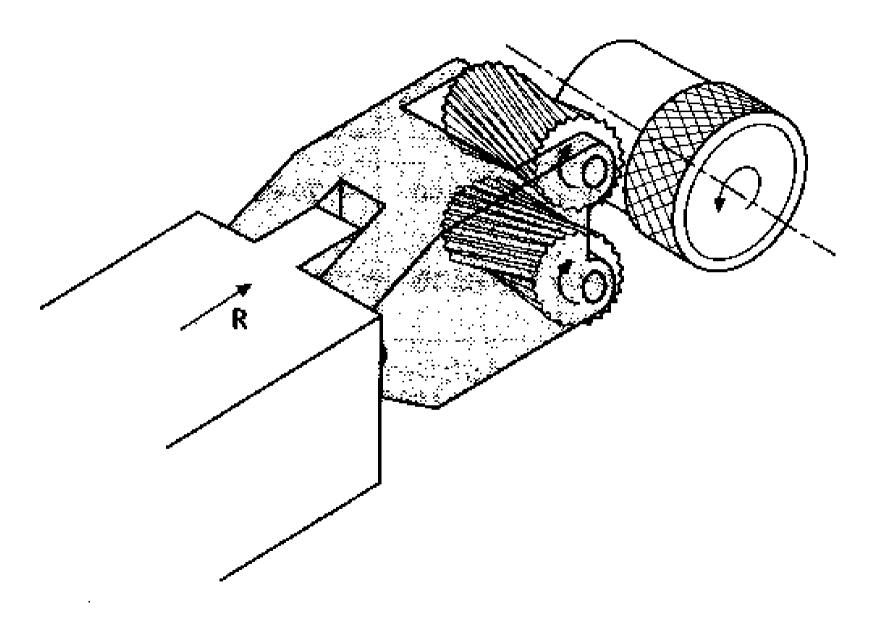
Fig. 9-5 Operazioni di filettatura esterna e interna.

Fig. 9-7 Alcuni metodi di incremento della passata in operazioni di filettatura:


- a) incremento radiale;
- b) incremento parallelo al fianco del filetto;
- c) incremento bilaterale.


Esecuzione di gole e troncature

- Per l'esecuzione di gole di vario genere (sede di anelli seeger, o-ring, etc.,) è necessario, con il moto di appostamento, posizionare l'utensile, di sagoma opportuna, in corrispondenza della posizione della gola
- Si procede poi con moto radiale di avanzamento alla realizzazione della gola
- Il moto dell'utensile oltre l'asse di tornitura comporta la troncatura di uno spezzone



Zigrinatura

La zigrinatura è ottenibile per deformazione plastica a freddo mediante l'applicazione di un doppio rullo con zigrinatura inclinata in senso opposto premuto contro la superficie

LIUC - Ingegneria Gestionale

Tornitura esterna di superfici di forma complessa

- Combinando opportunamente i moti di avanzamento parallelo e perpendicolare all'asse di tornitura è possibile ottenere profili di rivoluzione di profilo complesso
- Tale possibilità è legata sostanzialmente all'uso di torni CN e alla scelta di opportuni angoli di lavoro degli inserti taglienti

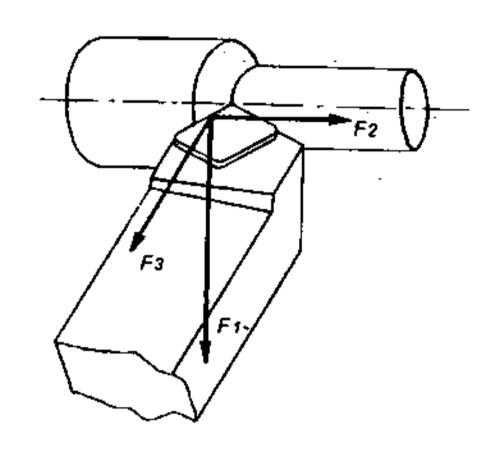
Parametri di taglio

- I parametri fondamentali di taglio sono:
 - □ Velocità di taglio (v = m/min)
 - □ Avanzamento (a = mm/giro)
 - □ Profondità di passata (p = mm)
- La scelta dei parametri dipende da numerosi fattori:
 - il materiale in lavorazione
 - il tipo di lavorazione
 - il materiale dell'utensile
 - il tipo di macchina e le condizioni di bloccaggio del pezzo sulla macchina

. . . .

Forza di taglio

- Componenti della forza:
 - □ Nella direzione della velocità di taglio (F₁)
 - □ Nella direzione della velocità di avanzamento (F₂)
 - □ Nella direzione perpendicolare al piano individuato dalle due precedenti (F₃)
- Si può verificare facilmente che l'unica componente significativa ai fini dell'individuazione della potenza necessaria è la componente F₁: assumeremo dunque che F = F₁
- Si definisce per comodità: $F = K_s$ ·s


Ove:

- la grandezza K_s è definita pressione di taglio
- s è la sezione di truciolo

Fig. 9.4

Componenti della forza di taglio.

- La pressione di taglio k_s così come definita è influenzata da più fattori quali:
 - □ La sezione del truciolo s. In particolare k_s diminuisce all'aumentare della sezione s secondo la relazione:

$$k_s = \frac{k}{S} \quad (N/mm^2)$$

ove

k è la pressione specifica di taglio per sezione unitaria di truciolo w è un valore sperimentale che dipende dal materiale in lavorazione

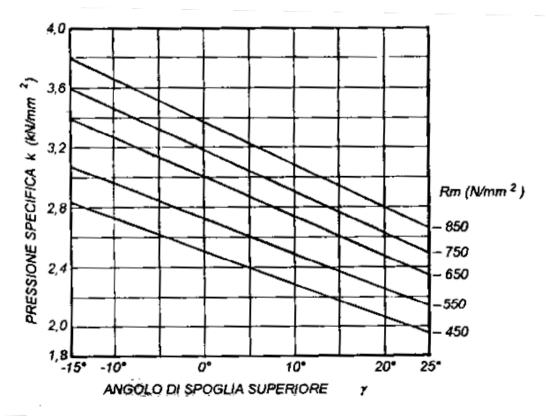

Pressione specifica di taglio

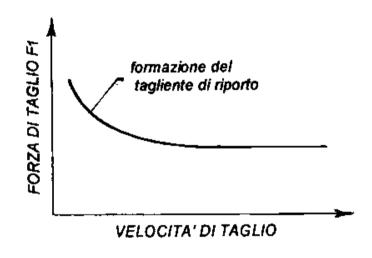
Tabella 9.1 - Valori della pressione specifica di taglio k per gli acciai e per le ghise (valori validì per un angolo di spoglia superiore dell'utensile γ = 10°).

	Materiale	Pressione specifica di taglio k (N'mm²)
Acciai	$R_m = 450 \text{ N/mm}^2$ $R_m = 550 \text{ N/mm}^2$	2300 2500
	$Rm = 650 \text{ N/mm}^2$ $Rm = 750 \text{ N/mm}^2$ $Rm = 850 \text{ N/mm}^2$	2750 2900 3100
Ghise	HBS = 120 HBS = 160 HBS = 200 HBS = 240 HBS = 280	1050 1160 1270 1350 1460

 □ L'angolo di spoglia superiore dell'utensile. In particolare k_s diminuisce all'aumentare dell'angolo di spoglia superiore

□ Influenza di profondità di passata p e avanzamento a. k_s aumenta al diminuire della profondità di passata (p) e dell'avanzamento (a):

$$k_s = \frac{k}{a^x \cdot p^y}$$


ove, per gli acciai

$$x = 0.17$$

$$y = 1$$

- □ la velocità di taglio v influisce sulla pressione. In particolare al suo eccessivo diminuire la pressione di taglio aumenta per via del formarsi del tagliente di riporto.
- l'impiego di un fluido da taglio può ridurre sensibilmente la pressione di taglio

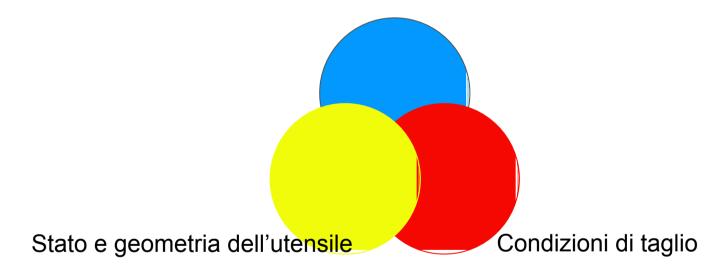
Potenza di taglio

 Nota la pressione di taglio e la sezione del truciolo è possibile calcolare la forza di taglio F e dunque la potenza di taglio secondo la relazione:

$$W = \frac{F \cdot v}{60 \cdot 1000} \text{ in kW}$$

da cui la potenza della macchina utensile

$$W_m = W\eta$$


ove η è il rendimento della macchina quindi, detto t il tempo di lavorazione si ha l'energia richiesta, pari a

$$E = \frac{W_m \cdot t}{60} \quad in \text{ kWh}$$

Concetto di lavorabilità

Materiale e sua "storia"

Indice di lavorabilità

$$I = \frac{\text{V15 del materiale in prova}}{\text{V15 del materiale campione}} \cdot 100$$

ove si assume come materiale campione l'acciaio ad alta velocità CF 9 S Mn 23 (UNI4838)

Durata utensile in tornitura

Relazione di Taylor

```
v \cdot h^r = C_h
```

ove

v è la velocità di taglio (m/min)

h è la durata dell'utensile (min)

r, Ch, sono costanti dipendenti da:

- → binomio utensile pezzo
- → avanzamento prefissato
- → profondità di passata definita

Relazione di Taylor esplicita

$$v = \frac{C_{60}}{a^m \cdot p^n \cdot \left(\frac{h}{60}\right)^r}$$

ove

C₆₀ esprime il valore della velocità di taglio per consentire una una durata dell'utensile pari a 60 min quando il prodotto a_m · p_n è uguale a 1

Rugosità in tornitura

- Rugosità teorica
 - □ Dipende dall'avanzamento prefissato e dagli angoli caratteristici dell'utensile utilizzato
- Rugosità effettiva
 - È sempre maggiore di quella teorica in quanto deve tenere conto di altri fattori quali le vibrazioni della macchina, i taglienti di riporto, l'usura dell'utensile,

Rugosità in tornitura

- Il grado di finitura dipende da:
 - □ Avanzamento
 - □ Raggio di punta
 - □ Angoli dei taglienti dell'utensile
- In condizioni reali esistono poi altri fattori:
 - Materiale in lavorazione
 - □ Velocità di taglio
 - □ Usura dell'utensile