Lesson II: Overview

1. Foreign exchange markets: everyday market practice

2. Forward foreign exchange market

Foreign exchange markets: everyday market practice

Getting started I

The exchange rates printed in financial newspapers are normally mid-rates, standing half way between the quoted bid-ask rates.

- Bid: rate at which a certain market player is willing to buy
- Ask: rate at which a certain market player is willing to sell

Bid rate < Ask rate

Getting started II

Ask rate - Bid rate = Bid/Ask Spread

The bid-ask spread can be conceived as a transaction cost.

Getting started III

Apart from two notable exceptions (GBP and EUR), all the other major currencies are quoted in European terms, that is foreign currency per USD

F/USD \rightarrow think of these exchange rates as the buying and selling prices of US dollars.

Getting started IV

For instance, CHF/ bid\$ is the rate at which a certain mkt player is willing to buy USD against CHF and CHF/ ask\$ is the rate at which the same mkt player sells USD against CHF.

CHF/ bid\$ < CHF/ ask\$

Getting started V

Conversely, EUR and GBP are quoted in USD equivalent

USD/F \rightarrow think of these exchange rates as the buying and selling prices of EUR or GBP.

Getting started VI

For instance, $\$ /$ bid£ $(€)$ is the rate at which a certain mkt player is willing to buy GBP (EUR) against USD and \$/ ask£ ($€$) is the rate at which the same mkt player sells GBP (EUR) against USD.

\$/ bid£ (€) < \$/ ask£ (€)

Terminology

Bid-ask quotations I

- EBS Non-Premium Rates							Properties ? $\quad \times \times$	
USD/EUR	1.3709.	125		JPY/USD	101.845	875	101.	
	1.36945	1.37240			101.390	101.990		
1.36740	1.36745	1.37150	1.37150	101.570	101.570	102.400		102.410

Source: Bloomberg, 17 ${ }^{\text {th }}$ February 2014

- \$ 1.37095/bid€ means that the price provider is willing to buy EUR at 1.37095 USD;
- \$ 1.37125/ask€ means that the price provider is willing to sell EUR at 1.37125 USD

Bid-ask quotations II

- EBS Non-Premium Rates							Pperties ? $\square \times$
USD/EUR	1.37095	125		JPY/USD	101.845	875	101.
	1.36945	1.37240			101.390	101.990	
1.36740	1.36745	1.37150	1.37150	101.570	101.570	102.400	102.410

Source: Bloomberg, 17 ${ }^{\text {th }}$ February 2014

- $¥ 101.845 / b i d \$$ means that the price provider is willing to buy USD at 101.845 JPY ;
- $¥ 101.875 /$ ask $\$$ means that the price provider is willing to sell USD at 101.875 JPY

Bid-ask quotations III

Equivalent notations

1.\$/bid $£=$ ask\$/bid $£ \rightarrow$ rate at which the price provider is willing to buy GBP against (selling) USD (i.e. the buying rate for GBP and the selling rate for USD)

Bid-ask quotations IV

Equivalent notations

\triangle\$/ask£ = bid\$/ask£ \rightarrow rate at which the price provider is willing to sell GBP against (buying) USD (i.e. the selling rate for GBP and the buying rate for USD)

Bid-ask quotations V

\triangle
Given \$/bid£ and \$/ask£, what if you were to sell/buy GBP?

- \$/bid£ = number of USD you will receive from the bank from the sale of GBP per USD
- \$/ask£ = the price that you must pay to buy GBP from USD

Reciprocal rates \& bid-ask spread

When bid-ask prices are taken into account:

$$
S_{i / a s k j}=\frac{1}{S_{j / b i d i}}
$$

and

$$
S_{i / b i d j}=\frac{1}{S_{j / a s k i}}
$$

Evidence on the bid-ask spread

The bid ask spread tends to:

1. vary throughout the day \rightarrow in particular, the spread is higher:

- at the start/end of the trading day;
- on Fridays (at closing), on Mondays (at opening) as well as on the last trading day of the month;
- on market holidays (for big financial centers)

2. increase with the volatility of the spot rate
3. decrease when more dealers are in the market:

- the larger the dealers, the thinner the spread

A practical insight I

Suppose you were to buy GBP from EUR and assume that:

S(\$/bid€)	S(\$/ask€)	S(\$/bid£)	S(\$/ask£)	S(£/bid€)	S(£/ask€)
1.1020	1.1050	1.5775	1.5810	.6960	.6965

In principle, you could either choose a direct transaction (you sell EUR to buy GBP) or an indirect transaction via USD (you first sell EUR to buy USD and then you sell USD to buy GBP)

A practical insight II

Indirect transaction:

S(\$/bid€)	S(\$/ask€)	S(\$/bid£)	S(\$/ask£)
1.1020	1.1050	1.5775	1.5810

1. $S_{\$ / b i d €}=1.1020$ (sell $€$ to buy $\$$)
2. $S_{\$ / \text { askf }}=1.581($ sell $\$$ to buy $£)$
3. $S_{£ / b i d €}=$

$$
\frac{S_{\$ / b i d €}}{S_{\$ / a s k f}}=\frac{1.1020}{1.581}=.6970
$$

A practical insight III

Direct transaction:

S(£/bid€)	S(£/ask€)
.6960	.6965

1. $S_{£ / b i d €}=.6960($ sell $€$ to buy $\$)$

Cross rates, arbitrages, B-A spread I

The best available solution is the one that allows you to get more GBP per EUR.

As long as $S_{£ / \text { bid } \in} \geq \frac{S_{\$ / b i d \epsilon}}{S_{\$ / a s k \not}}$, you are better off choosing the direct transaction.

Cross rates, arbitrages, B-A spread II

Università Cattaneo

Conversely, whenever $S_{\mathfrak{£} / \text { bid } £} \leq \frac{S_{\$ / \text { bid } £}}{S_{\$ / \text { ask }}}$, the
indirect transaction will give you a better return.

Cross rates, arbitrages, B-A spread III

In practice, however, triangular arbitrage opportunities are very unlikely to materialize

An increasing number of people will try to profit from the price differential and will consequently sell $€ \rightarrow$ buy $\$ \rightarrow$ sell $\$ \rightarrow$ buy $£$, thus driving $€$ down and $£$ up, until equilibrium is finally restored (No free lunch principle)

$$
S_{£ / b i d €}=\frac{S_{\$ / b i d €}}{S_{\$ / a s k £}}
$$

To put it into practice

	Bid	Ask
USD/Currency 1	1.35135	1.35227
Currency 2/USD	83.3650	83.3925

1) How much would you lose if you converted $\$ 1000$ into Currency 1 and then back into USD?
2) What is the bid-ask spread for Currency $2 / \mathrm{USD}$?
3) What is the bid-ask spread of Currency1 in terms of Currency2?
4) How much would you lose if you converted $\$ 1000$ into Currency 1 , then into Currency 2 and finally back into USD?

Forward foreign exchange market

Spot vs Forward markets

- Spot exchange rate: FX rate that is contracted today for immediate delivery (generally, $\mathrm{t}+1$ or $\mathrm{t}+2$)
- Forward exchange rate: rate that is contracted today for the exchange of currencies on a specific date in the future (1m, 3m, 6m...).

The forward market

Exactly like the spot market:

- No central location
- 24h trading
- Direct interbank market (decentralized, continuous, open-bid, double-auction) \& indirect broker market (quasi-centralized, continuous, limit-book, singleauction market) [Lesson I]
- Bid-ask quotation

Conventions for fwd FX quotations I

Forward rates are generally quoted in terms of the corresponding spot rate \pm a suitable number of swap points, depending on the forward maturity taken into consideration

Swap points will be added to (subtracted from) the spot bid-ask quotes whenever they are ascending (descending)

Conventions for fwd FX quotations II

Given the spot rates and the swap points below, how to find the corresponding fwd bid-ask quotation?

Spot	6-month swap
$1.3965-70$	$27-23$

Descending swap points \rightarrow to be subtracted
$\mathrm{F}_{\mathrm{bid}}=1.3965-.0027=1.3938$
and
$\mathrm{F}_{\text {ask }}=1.3970-.0023=1.3947$

Fwd FX quotations

The bid-ask spread for forward quotations is wider as time to maturity increases \rightarrow this is mostly due to market "thinness"

Thinness: smaller trading volumes for longer maturity forwards \rightarrow it is more difficult for banks to offset positions in the interbank forward market after taking orders to buy or sell forwards

Fwd notation

Forward exchange rate: rate that is contracted today for the exchange of currencies on a specific date in the future.
$\mathrm{F}_{\mathrm{n}}(\mathrm{i} / \mathrm{j})$ is the n -year forward exchange rate of currency i per unit of currency j

Forward premium and discount I

When it is necessary to pay more (less) for forward delivery than for spot delivery of a currency, we say that the currency is at a forward premium (discount).

Forward premium and discount II

N-year forward premium/discount (on a yearly basis)

$$
\frac{F_{n i / j}-S_{i / j}}{n S_{i / j}}
$$

Forward premium and discount III

$$
S_{¥ / \$}=76.89 \text { and } F_{.5 ¥ / \$}=76.65
$$

$$
\text { premium } / \text { discount }=\frac{76.65-76.89}{.5 \cdot 76.89}=-.00624
$$

Fwd discount of the Dollar versus the Yen (\equiv fwd premium of the Yen versus the Dollar)

Fwd \& expected future spot rates

Assuming risk neutrality and no transaction costs, forward rates must be equal to expected future spot rates (to prevent all arbitrage opportunities):

$$
\mathrm{F}_{\mathrm{n} i / j}=\mathrm{E}\left[\mathrm{~S}_{\mathrm{i} / j}\right]
$$

Indeed, what would happen if

$$
\mathrm{F}_{\mathrm{ni} / \mathrm{j}}>(\text { or }<) \mathrm{E}\left[\mathrm{~S}_{\mathrm{i} / \mathrm{j}}\right] ?
$$

FX net turnover by mkt segment

Foreign exchange market turnover by instrument ${ }^{1}$
Net-net basis, daily averages in April
Graph 3

${ }^{1}$ Adjusted for bcal and cross-border inter-dealer double-counting, ie "net-net" basis.
Source: EIS Triennial Central Eank Survey. For additional data by instrument, see Table 1 on page 9.

Terminology I

- Outright fwd contract: agreement to exchange currencies at a pre-determined price on a future date.
- FX Swap: agreement to buy and sell foreign exchange at pre-specified exchange rates, where the buying and selling are separated in time (two major components: a spot transaction plus a forward transaction in the reverse direction).

$$
\sqrt{\square}
$$

A swap-in (swap-out) $€$ consists of an agreement to buy (sell) € spot and to sell (buy) them forward

Terminology II

- Currency Swap: agreement involving two parties in the exchange of principal and interest payments on a loan in one currency for principal and interest payments in another currency.
- Options: derivative contracts that give the buyer the opportunity to buy (call) or to sell (put) the underlying asset at a given price sometime in the future

Forwards' payoff profile I

When the forward contract matures, its value is determined by the realized spot rate at that time.

Forwards' payoff profile II

Long forward position to buy 1 million $€$ with $\$$ in n months' time.

$\mathbf{F}_{\$ / \epsilon}=\mathrm{E}[\mathrm{S} \$ / \epsilon], \boldsymbol{\Delta} \mathbf{S}=($ Realized $\mathrm{S} \$ / \notin-\mathrm{F} \$ / \epsilon)$ and $\Delta \mathrm{V}_{\$}=\$$ gain or loss on the forward position

Benefits and Risks of Forwards

- High flexibility (not only major currencies, tailor-made maturities, deliverable vs nondeliverable);
- No central counterparty \rightarrow higher settlement risk

