L'assemblaggio

Definizione

L'Assemblaggio (o montaggio) è realizzato tramite una serie di operazioni di composizione di parti mediante operazioni di inserzione, unione, avvitatura, ecc., che godono nella massima parte dei casi della proprietà di essere reversibili.

Pertanto, rispetto ai processi di fabbricazione:

- □ Non comporta quasi mai trasformazioni chimico-fisiche dei materiali e, quindi, presenta minori fabbisogni di energia e potenza
- Assegna importanza rilevante al <u>contenuto informativo delle</u> <u>operazioni</u>
- Richiede la gestione dei <u>flussi di parti e di assiemi in</u> <u>accrescimento</u>

Caratteristiche tecnologiche

- Semplice giustapposizione di componenti a formare assiemi, gruppi e prodotti finiti. Tale giustapposizione è reversibile
- Ciclo tecnologico <u>libero e discreto</u>, con livelli di flessibilità assai differenziati

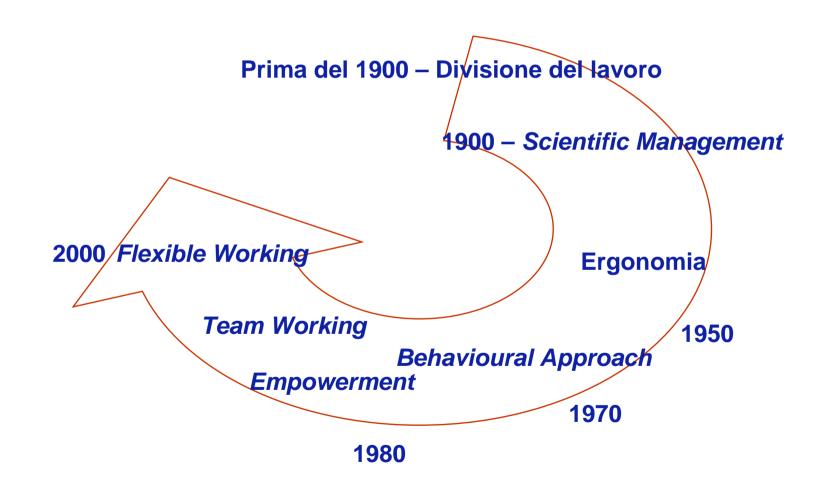
Caratteristiche gestionali ed economiche

Grande rilevanza dei parametri gestionali (appuntamenti, tempi di attraversamento, ritardi,...)

<u>Capitale investito</u> tendenzialmente basso, comunque variabile in funzione del livello di automazione e della specializzazione del macchinario

Prevalenza di operazioni manuali e quindi <u>peso della manodopera</u> <u>tendenzialmente elevato</u>

Elevata <u>rilevanza dei costi dei materiali e di quelli</u> <u>amministrativi/gestionali</u>



Tempificazione delle operazioni

- A ciascuna della operazioni da svolgere è necessario attribuire un tempo per la sua esecuzione.
- I tempi necessari dipendono da:
 - Tipo di operazione
 - Attrezzatura disponibile
 - Assieme e suo posizionamento
 - Destrezza operatore
 - Livello di automazione

Job design

Scientific Work Management

Fredrick Winslow Taylor nel 1911 pubblica un libro dal titolo "Scientific Management", dove identifica i principi di una gestione e progettazione scientifica del lavoro

- Tutti gli aspetti del lavoro devono essere studiati in maniera scientifica, per stabilire leggi, regole e formule per governare i migliori metodi di lavoro
- Questo studio serve per impostare la dimensione del "giorno tipico di lavoro"
- □ I lavoratori devono essere selezionati, educati e formati metodologicamente per condurre i propri compiti
- □ I responsabili devono agire come pianificatori del lavoro analizzando i compiti e standardizzando i metodi migliori, mentre i lavoratori devono essere responsabilizzati per migliorare il proprio lavoro secondo gli standard
- □ Tra responsabili e lavoratori ci deve essere cooperazione per raggiungere la "massima prosperità" reciprocamente

Work study

Work Study

Analisi di tutti i fattori che riguardano la progettazione del lavoro

Method Study & Engineering

Sistematica registrazione ed analisi critica di metodi di lavoro esistenti, finalizzata allo sviluppo di più facili, più efficaci e più efficienti metodi

Work Measurement

Applicazione di tecniche progettate per stabilire il tempo a disposizione per un operatore per effettuare un dato compito

Methods Study & Engineering

"Methods engineering is the technique that subjects each operation of a given piece of work to close analysis in order to eliminate every unnecessary operation and in order to approach the quickest and best method of performing each necessary operation.

It includes the standardization of equipment, methods, and working conditions; it trains the operator to follow the standard method; when all this has been done, and not before, it determines by accurate measurement the number of standard hours in which an operator working with standard performance can do the job; finally, it usually, although not necessarily, devises a plan for compensating labor which encourages the operator to attain or to surpass standard performance." (Maynard et al, 1948)

Work Measurement

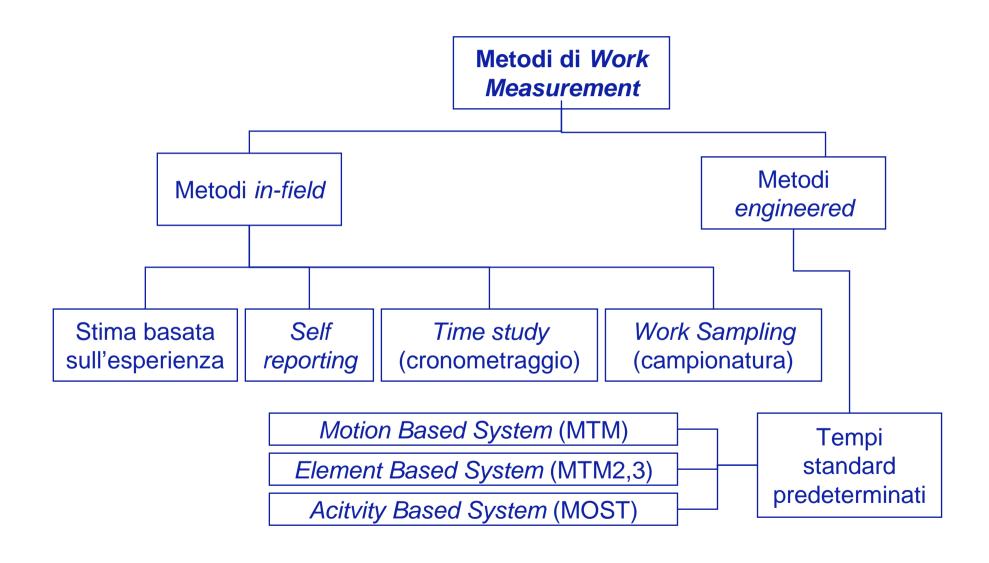
- "La misura del lavoro è la procedura con cui si misura o si prevede la resa produttiva di un'operazione esistente o progettata, oppure si determina quanto tempo si spende nelle varie attività produttive e non produttive di un processo, di un'operazione o di un lavoro" [Carson, 1999]
- "La misura del lavoro consiste nell'applicazione di tecniche studiate per stabilire il contenuto di lavoro relativo al compito specifico, determinando il tempo richiesto per svolgerlo secondo un definito standard di prestazione da parte di un operatore qualificato" [International Labour Office of Geneve]
- "Work Measurement: the science that brings more and better knowledge to people about work and how to improve work" [Zandin 1997]

Che cosa si determina con il WM?

- Il Work Measurement è utilizzato per fissare i Tempi Standard per attività sia semplici che complesse
- Il Tempo Standard è il tempo teoricamente necessario per eseguire il lavoro prefissato rispettando un determinato ciclo di lavoro
 - □ Tempo necessario a un esecutore normale, di abilità normale, non incentivato, che lavora in condizioni normali e a velocità normale, per realizzare una operazione (o un lavoro) con risultati qualitativi accettabili.

Tempi standard e Tempi effettivi

- I Tempi Standard sono alla base dei calcoli di Stima dei Costi (ne conseguono i Costi Standard)
- I tempi standard sono determinati relativamente alla specifica azienda e rispecchiano le condizioni, le attrezzature, i metodi, le tecnologie adottati in azienda
- Il calcolo dei tempi standard è inoltre legato alla modalità/metodo di misura del lavoro
- Il Tempo Effettivo è il tempo effettivamente impiegato per realizzare un'operazione o un lavoro
 - Differisce dal tempo standard per inefficienze di: processo, progettazione prodotto, materiali, metodo management, condizioni ambientali, esecutore


Dove è impiegato il WM

La misura dei tempi di lavoro è uno strumento utilizzato in diverse attività (semplici o complesse)

- □ Analisi dei tempi di lavoro
- □ Progettazione e Preventivazione di un nuovo prodotto
- Progettazione di una linea di montaggio
- □ Calcolo del volume di produzione potenziale e delle risorse necessarie
- □ Programmazione della produzione
- □ Previsione delle date di consegna ai clienti
- □ Equilibratura dei carichi di lavoro
- □ Per elaborare i *budget* di spesa
- Per effettuare l'analisi degli scostamenti tra attività previste e a consuntivo (da qui il problema sindacale della misura del lavoro nelle fabbriche...)

Metodi di Work Measurement

Stima basata sull'esperienza

- Tecnica approssimativa e soggettiva basata sulla conoscenza dei dati storici relativi a lavori analoghi e sull'esperienza dei valutatori
- Tendenzialmente il valutatore tende a sovrastimare i tempi
- È valida quando non è necessaria una grande precisione

Self reporting

- La persona incarica di compiere la valutazione è l'operatore stesso oggetto dell'indagine
- Tendenzialmente l'individuo sovrastima i propri tempi in maniera superiore ad un valutatore esterno
- È valida come prima forma di comprensione della dimensione tempo, considerando un grado di accuratezza basso

- Time study o cronometraggio
 - □ Tecnica adoperata per determinare il più accuratamente possibile, mediante un numero limitato di osservazioni, il tempo necessario ad eseguire una certa attività secondo obiettivi di efficienza stabiliti
- È classificato tra i metodi *in-field* in quanto richiede un'analista incaricato di rilevare i tempi nella realtà (es. a bordo linea)
 - □ L'analista rappresenta un costo
 - L'analizzato non è nella condizione standard, ma sotto stress (con le relative modifiche di comportamento)

Scelto il ciclo di attività da analizzare, si seguono i seguenti passaggi:

- 1. Suddivisione del ciclo in fasi identificate da precisi istanti di inizio e fine (ogni fase deve richiedere almeno qualche secondo per l'esecuzione, ma non più di qualche minuto)
- 2. Definizione del **tempo di riferimento** (t) per ogni fase
- 3. Definizione del **numero di cronometraggi** da effettuare
- 4. Cronometraggio e registrazione delle misure
- 5. Calcolo del **tempo standard** (ST) di ciclo
 - Calcolo del tempo medio di fase (t')
 - Calcolo del tempo normale di fase (NT), tenendo conto del fattore di resa (RF)
 - Somma degli NT per ottenere il tempo normale di ciclo (NTC)
 - Maggiorazione NTC di un fattore di aggiustamento (A)

- 1. Scelta delle fasi
 - Esempio: Operazione di imballaggio di tazze di caffè, costituita da 4 fasi
 - 1. Prendere due scatole
 - 2. Inserimento spessori
 - 3. Inserimento tazze nel cartone
 - 4. Chiusura cartoni

- 2. Definizione del tempo di riferimento (t)
 - Si esegue un numero limitato di cronometraggi e se ne calcolano valore medio e deviazione standard
 - Si eseguono 40 osservazioni, tranne per la prima fase, poiché si prendono due scatole per volta

Fasi	Osservazioni	Tempo di rif (t) - min	Deviazione std min
1) Prendere due scatole	20	0,5	0,0305
2) Inserimento spessori	40	0,11	0,0171
Inserimento tazze nel cartone	40	0,71	0,0226
4) Chiusura cartoni	40	1,1	0,0241

No.

Time study

3. Determinazione del numero di cronometraggi

$$n = \left\lceil \left(\frac{z}{h} \right) * \left(\frac{\sigma}{t} \right) \right\rceil^2$$

Livello di confidenza	z
90%	1,65
95%	1,96
99%	2,58

Dove:

z = fattore legato al livello di confidenza desiderato

 σ = deviazione standard

h = margine percentuale di errore ammissibile sulle valutazioni

t = tempo di riferimento

ŊΑ

Time study

- Esempio di calcolo del numero di cronometraggi
 - □ Livello di confidenza = 95% (z = 1,96)
 - ☐ Margine di errore ammissibile h = 4%

Fase 1
$$n = \left[\left(\frac{1,96}{0,04} \right) * \left(\frac{0,0305}{0,5} \right) \right]^2 = 9$$
 Fase 3 $n = \left[\left(\frac{1,96}{0,04} \right) * \left(\frac{0,0226}{0,71} \right) \right]^2 = 3$

Fase 2
$$n = \left[\left(\frac{1,96}{0,04} \right) * \left(\frac{0,0171}{0,11} \right) \right]^2 = 58$$
 Fase 4 $n = \left[\left(\frac{1,96}{0,04} \right) * \left(\frac{0,0241}{1,1} \right) \right]^2 = 2$

- Il numero di cronometraggi da effettuare è quello più alto fra i 4.
- Si noti che la notevole differenza tra i numeri di cronometraggi calcolati dipende dall'elevata dispersione dei tempi cronometrati nella fase 2

- 5. Calcolo del tempo standard
- 5.1 Calcolo del tempo medio di fase

Tempo medio di fase (t') =
$$\frac{\sum_{i=1}^{n} t_i}{n}$$

Il tempo medio per fase è calcolato effettuando 58 osservazioni

Fase	ť
1	0,53
2	0,1
3	0,75
4	1,08

Dove:

- ti = tempo impiegato da un lavoratore per l'esecuzione di una fase elementare in ciascuno degli n cronometraggi effettuati
- n = numero di cronometraggi effettuati (in teoria con cronometraggi effettuati sempre sullo stesso operatore)

M

Time study

5.2 Calcolo del tempo normale di fase Tempo normale di fase (NT) = t' * F * RF

Dove:

- □ RF (Rating Factor) serve per tener conto di quanto si discosta dalla media la prestazione del lavoratore cui sarà affidata l'esecuzione della fase (il valore RF >1 se la prestazione è inferiore alla media, < 1 se superiore)</p>
- □ F = 1 / entità considerate contemporaneamente, cioè F indica per quante entità l'operazione è svolta contemporaneamente

Fase	F	RF	Operatore	NT
1	0,5	1,05	Operatore sopra la media	NT1 = 0,53 * 0,5 *1,05 = 0,28 min
2	1	0,95	Sotto	NT2 = 0,1 * 1 * 0,95 = 0,10 min
3	1	1,10	Sopra	NT3 = 0,75 * 1 * 1,10 = 0,83 min
4	1	0,9	Sotto	NT4 = 1,08 * 1 * 0,9 = 0,97 min

5.3 Somma dei tempi normali dei singoli elementi e calcolo del tempo normale di ciclo NTC

$$NTC = \sum_{j=1}^{m} NT_{j}$$

Nell'esempio NTC = 2,18 min

Dove j = 1...m indica il numero di attività monitorate

Tempo Standard ST = NTC *
$$(1 + A)$$

Dove A = Fattore di aggiustamento, serve a considerare i bisogni personali dei lavoratori, la fatica...

A = 15%
ST = NTC *
$$(1 + A) = 2.18$$
 * $(1 + 0.16) = 2.51$ min/scatola

2,51 minuti assegnati al reparto per confezionare scatola con 2 tazzine da caffè

- Il work sampling valuta come un lavoratore distribuisce il tempo che ha a disposizione tra i differenti compiti che deve svolgere, momenti di pausa, riunioni...
- La distribuzione di tempo rilevata, durante il periodo e le osservazioni prese a campione, è assunta come riferimento generale per il calcolo del tempo effettivo per compiere un lavoro
- Il work sampling è impiegato per determinare:
 - Ripartizione delle quote di tempo impiegato, in particolare quota di tempo improduttivo: si stima la percentuale di tempo che i lavoratori dedicano inevitabilmente ad attività improduttive
 - I risultati sono quindi utilizzati nello studio dei metodi di lavoro e nella valutazione dei costi delle diverse attività
 - Impostazione degli standard lavorativi: per definire adeguatamente gli standard lavorativi l'analista deve possedere un'esperienza sufficiente a classificare correttamente le varie attività svolte dai lavoratori
 - □ Performance: con il campionamento si può sviluppare un indice delle prestazioni per la valutazione periodica dei lavoratori

M

Work sampling

Passi del metodo:

- Definire le attività
- 2. Definire come compiere le osservazioni casuali
- 3. Definire la lunghezza dello studio
- 4. Preparare la tabella per la registrazione delle osservazioni
- Definire le dimensioni di un campione preliminare (es. 50) e compiere le osservazioni per ottenere la stima dei valori dei parametri di riferimento
- Calcolare la dimensione reale del campione necessaria per ottenere risultati validi
- Osservare le attività e registrare i dati
- Decidere se continuare nelle osservazioni
- 9. Calcolo del tempo normale per unità/attività
- 10. Calcolo del tempo standard per unità/attività

6. Calcolo della dimensione del campione

$$n = \frac{z^2 p(1-p)}{h^2}$$

Livello di confidenza	z
68%	1
95,45%	2
99,7%	3

Dove:

- n = dimensione del campione
- z = coefficiente della deviazione standard corrispondente al livello di confidenza desiderato
- p = stima ottenuta attraverso il campione preliminare del valore della grandezza osservata (es. frazione del tempo disponibile durante il quale il lavoratore è impegnato o fermo)
- h = livello di accuratezza desiderato (tolleranza rispetto alla stima precedente espressa in termini percentuali)

M

Work sampling

- Esempio
 - \Box h = 3%
 - \square Livello di confidenza = 95,45% (z = 2)
 - □ Percentuale stimata di tempo durante il quale il lavoratore è fermo = 25%

$$n = \frac{(2)^2 \cdot 0.25 * (1 - 0.25)}{(0.03)^2}$$

Più le due attività tra loro alternative risultano sbilanciate dopo le osservazioni preliminari (a parità delle altre condizioni), minore risulta essere il numero complessivo di osservazioni da compiere

Mantenendo gli stessi livelli di confidenza e accuratezza, data una percentuale di inattività del 10%, le osservazioni necessarie sarebbero 400!

7. Osservare le attività e registrare i risultati

Il metodo del WS definisce il numero di osservazioni da effettuare. Nell'osservazione si considera quale attività sta compiendo l'operatore, tra quelle definite

Esempio: osservazione di un'operatrice allo sportello del cittadino di un comune. Periodo di analisi 2 settimane, con 833 rilevazioni

Numero di osservazioni	Attività
485	Al telefono o a colloquio con un cittadino
126	Non occupata
62	Riposo personale
23	In riunione con direttore
137	Computer Data Entry
833	

Il 22,6 % (62+126)/833 delle volte (quindi del tempo) l'operatrice non è occupata.

A seconda di quello che la % prevista, possono essere prese decisioni in merito (aumentare o diminuire i compiti)

- Il WS può essere impiegato anche per il calcolo dei tempi, oltre che per la definizione delle % di attività
- 9. Calcolo del tempo normale per unità/attività:

$$T_n = \frac{T_t * P_{occ} * RF}{N}$$

Dove:

Tt = tempo totale di osservazione

Pocc = percentuale di tempo in cui il lavoratore osservato risulta occupato nella data attività

N = numero di pezzi prodotti

RF = Performance *rating factor*, serve per tener conto di quanto si discosta dalla media la prestazione del lavoratore cui sarà affidata l'esecuzione della fase (il valore RF >1 se la prestazione è inferiore alla media, < 1 se superiore)

10. Determinazione del tempo standard per unità/attività

$$Tst = Tn/(1 - A)$$

Dove A = fattore di aggiustamento, espresso in termini di frazione percentuale, utilizzato per considerare i bisogni personali dei lavoratori, la fatica...

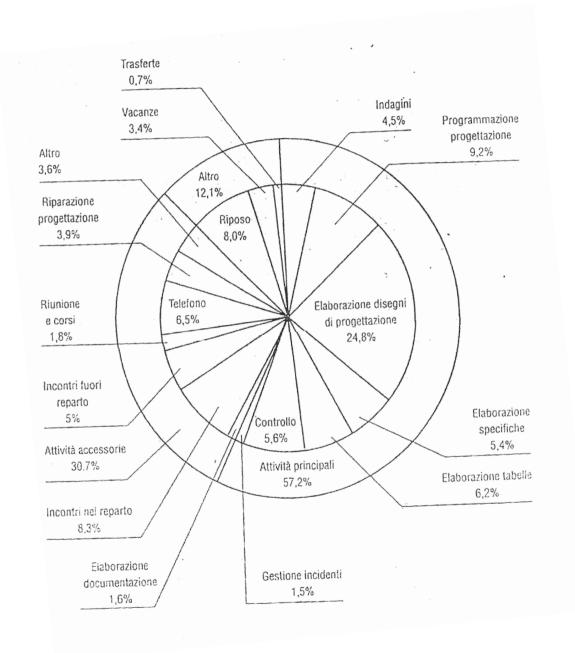
Al termine di osservazioni su un operatore, con RF = 1, effettuate per un totale di 80 ore (4.800 min) sono stati prodotti 225 pezzi, con % di tempo in cui l'operatore è risultato occupato dell'80%.

Dato un
$$A = 25\%$$

$$Tn = (4.800 * 0.8 * 1) / 225 = 17.07 min/pezzo$$

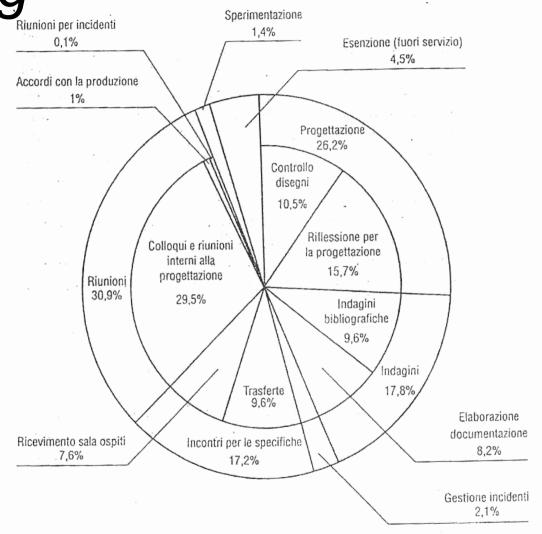
$$Tst = 17,07 / (1-0,25) = 22,76 \min/pezzo$$

- II WS può essere eseguito anche su più attività e persone in contemporanea (dato che si tratta soltanto di una rilevazione di attività)
- Si rileva nello stesso istante quali tra le N attività possibili stiano svolgendo K addetti con la stessa qualifica impegnati nello stesso tipo di lavoro
- Le osservazioni sono ripetute seguendo le stesse procedure per un numero **M** prefissato di volte
- Al termine del periodo di campionatura si avranno K*M osservazioni ripartite tra le N attività possibili. Di ciascuna delle N attività si potrà pertanto valutare il peso %
- SI potrà così dedurre:
 - □ Di quanto maggiorare il tempo produttivo per arrivare al tempo standard
 - □ Quali siano i motivi per i quali il tempo è improduttivo
 - □ Quali interventi attuare eventualmente per migliorare le performance



 Esempio di modulo per la raccolta e l'organizzazione delle osservazioni

		30	perso	per le os one osser ezione di	vate	9				Os	ssen	vato	re	ng		11/	/5X1	990				*
		A	TTIVITA	(1	2	3	4	5	6	7	8	9	10	S	Somma		V				
		١											1		7 10104745		1					
	2		Modulo per la somma totale del Work Samplin														ling		P =			
				1002-5		11 maggio							12 maggio									
Æ 5	1 3			ÁTIVITA								li lieri			Totali cumulati		Qi	Totali ornalie	%		Totali	
- I	5 4			1. Indagine							12	2	. 4,0	0 10	05		4 16		5,3			
ATTIVITÀ				2. Pia					ion	е	18	3	6,0	22	22	9,3	3	26	8.	.7	248	9,2
	5		-d =	3. Dis	3. Disegni progett.							2 2	24,0	0 60)5	25,2	2	64	21,3		669	24,8
	6	1	ATTIVITÀ	4. Spe	ecific	che	e te	cn.			13	3	4,3	3 13	30:	5,4		15	- 5,	0	145	5,4
			ATT	5. Tab	5. Tabulati vari								6,7	7 14	4	6,0	1	24	8,0		168	6,2
	7 6. Granci controllo										22		7,4	13	12	5,5	17		5,	7	149	5,6
	8.	1	7. Misure per incid.								4		1,3	3	3	1,4		38	2,	2,7		1,5
	9.			8. Doc	ume	ent:	azio	one)	-	0		0	3	5	1,5		7	2,3	3	42	1,6
	9.		· w	9. Colle	9. Colloqui interni					T	25		8,4	20	5	8,6	\parallel	20	6,	7	235	8,3
w	10.	.]]	ITA SORI	-	10. Colloqui esterni						10		3,3	12	0	5,0	T	15	5,0	o	135	5,0
ORI			ATTIVITA	10. Colloqui esterni 11. Riunioni, corsi 12. Telefono						24	1	3,0	4	5	1,9		3	1,0		48	1,8	
ACCESSORIE	11.	11	ACC	12. Tele		30					21		7,0	15	8	6,6		19	6,3	3	177	6,5
ACC	12			13. Prepar. progett.						10		3,3	9.	5	3,9		11	3,7	7	106	3,9	
				14. Altro							15	į	5,0	8	5	3,5		13	4,3	3	98	3,6
	13		0	15. Ripos	so						24	1	3,0	194	1	8,0		22	7,3	3	216	8,0
5	14	11	ALTRO	16. Asse	nza	fer	rie		THE COLO.		10	3	1,3	72	2.	3,0		20	6,7	+	92	3,4
	15		1	17. Trasf	7. Trasferta						0		0	20		0,8	0 0		+	20	0,7	
ALTRO	16		4	Attività pr	inci	ра	li			1	6.1	53	,7	1371		57,2	1	70	56,7	1	541	57,2
H.			SOMMA	Attività ad	ces	SSO	rie			11	05	35		743		31,0	80	38	29,3	1	831	30,7
	17		SC	Altro						:	34	11		286		11,8	2	12	14,0	1	328	12,1
SOMMA		F	•	Somma to	otale	9		-		30	00	100	,0	2400	-		30	00	100,0	27	700	100,0



Esempio
 analisi della
 ripartizione
 delle attività di
 un team di
 progettazione
 di macchine
 utensili

Esempio
 analisi della
 ripartizione
 delle attività
 di un team di
 progettazione
 di veicoli
 industriali

- II WS rispetto al *Time Study*:
 - □ È meno costoso, dato che un solo osservatore può verificare più attività in contemporanea ed in meno tempo
 - □ Non servono sistemi di rilevazione dei tempi, ma solo delle attività
 - □ Non è invasivo e quindi non modifica i comportamenti degli osservati
- Per contro, rispetto al *Time Study*:
 - □ Non scompone i diversi elementi di tempo
 - □ Può essere distorto da un'errata programmazione delle osservazioni (es. sempre alla stessa ora)
 - □ È meno accurato, soprattutto su tempi di ciclo brevi

M

- I sistemi a Tempi Standard Predeterminati si basano sul principio base che ogni movimento/elemento/attività elementare richieda praticamente sempre lo stesso tempo, a parità di condizioni di lavoro e se compiuto da un esecutore sufficientemente abile
- I tempi sono espressi nell'unità particolare TMU (Time Measurement Unit)
 - \square 1 TMU = 0,00001 ore = 0,0006 min = 0,036 sec
 - □ 1 ora = 100.000 TMU
- Per il calcolo dei Tempi Standard solitamente si aggiunge un coefficiente di correzione F

Passi del metodo a Tempi Standard Predeterminati:

- Scomposizione del lavoro da svolgere nei suoi microelementi di base
- Individuazione nelle tabelle appropriate dei valori di TMU relativi ai micromovimenti
- 3. Aggiustamento dei valori attraverso fattori correttivi
- 4. Esecuzione della somma dei valori di tutti i microelementi da compiere per svolgere il lavoro
- 5. Determinazione del tempo standard complessivo

- Esistono diverse famiglie e sottofamiglie di metodi/sistemi per il calcolo dei Tempi Standard Predeterminati
- La più diffusa (dalla quale deriva buona parte delle altre)
 è la famiglia nota come MTM (*Method Time Measurement*)
- I diversi sistemi MTM permettono l'applicabilità del metodo in funzione delle diversità delle esigenze degli utilizzatori
- Le principali famiglie sono:
 - ☐ Motion-based systems MTM 1
 - □ Element-based systems MTM II (es. MTM UAS, MTM MEK, MTM-HC)
 - □ Activity-based systems MOST

- Il metodo originario MTM definisce i tempi dei principali micromovimenti di
 - Arti superiori
 - □ Occhi
 - Arti inferiori
- I 9 micromovimenti arti superiori
 - □ Raggiungere (*Reach*), Muovere (*Move*), Ruotare (*Turn*),
 Applicare pressione (*Apply Pressure*), Prendere (Grasp),
 Rilasciare (*Release*), Posizionare (*Position*), Disaccoppiare (*Disengage*), Girare la chiave (*Crank*)
- Ad ogni movimento corrisponde una tabella che fornisce le TMU in funzione dei fattori al contorno (distanze da percorrere, pesi, forme degli oggetti..)

M

TABLE 7.1 Predicted Move–Time Data in Which a *Move* is Defined as a Motion of the Hand Required to Transport an Object (from MTM Association for Standards and Research, Fairlawn, NJ 07410)

	Time, TMUs				Allowance				
Distance Moved (cm)	А	В	С	Hand in Motion B	Weight (kg) up to	Constant (TMUs)	Factor	Case and Description	
0 to 2	2.9	2.0	2.0	1.7	1	0	1.00	Α	
4 6	3.1 4.1	4.0 5.0	4.5 5.8	2.8 3.1	2	1.6	1.04	Move object to other	
8	5.1	5.9	6.9	3.7				hand or	
10	6.0	6.8	7.9	4.3	4	2.8	1.07	against stop	
12	6.9	7.7	8.8	4.9					
14	7.7	8.5	9.8	5.4	6	4.3	1.12		
16	8.3	9.2	10.5	6.0					
18	9.0	9.8	11.1	6.5					
20	9.6	10.5	11.7	7.1	8	5.8	1.17	B Move object	
22	10.2	11.2	12.4	7.6	10	7.3	1.22	Move object to approximate	

		I	L	I	I	I	1	B Move object
22	10.2	11.2	12.4	7.6	10	7.3	1.22	Move object to approximate
24 26	10.8	11.8 12.3	13.0 13.7	8.2 8.7				or indefinite location
28	12.1	12.8	14.4	9.3	12	8.8	1.27	location
30	12.7	13.3	15.1	9.8				
	12.7	10.0	13.1	9.0	14	10.4	1.32	
35	14.3	14.5	16.8	11.2				
40	15.8	15.6	18.5	12.6				С
45	17.4	16.8	20.1	14.0	16	11.9	1.36	Move object
50	19.0	18.0	21.8	15.4	18	13.4	1.41	to exact
55	20.5	19.2	23.5	16.8			 	location
60	22.1	20.4	25.2	18.2			'	
65	23.6	21.6	26.9	19.5	20	14.9	1.46	
70	25.2	22.8	28.6	20.9	22	16.4	1.51	
75	26.7	24.0	30.3	22.3	22	10.4	1.51	
80	28.3	25.2	32.0	23.7				

Methods-Time Measurement Application Data (times in TMUs)

METHODS-TIME MEASUREMENT MTM-I APPLICATION DATA

Do not attempt to use this chart or apply Methods-Time Measurement in any way unless you understand the proper application of the data. This statement is included as a word of caution to prevent difficulties resulting from misapplication of the data.

1 TMU = .00001 hour	1 hour = 100,000.0 TMU
= .0006 minute	1 minute = 1,666.7 TMU
= .036 seconds	1 second = 27.8 TMU

Distance I Moved	Tim	• TMU			,	nd in Bion	CASE AND DESCRIPTION		
Inches	A	8	C or	E	A	В	A Reach to object in fixed		
3/4 or less	20	20	2.0	2.0	16	1.6	location, or to object in		
1	25	2.5	3.6	24	2.3	2.3	other hand or on which other hand rests.		
2	4.0	4.0	5.9	3.8	3.5	2.7	Oner restrict		
3	5.3	5.3	7.3	5.3	4.5	3.6	S Reach to single object		
4	61	64	8.4	6.8	4.9	4.3	in location which may		
5	6.5	7.8	94	7.4	5.3	5.0	vary slightly from cycle		
6	7.0	8.6	10.1	8.0	5.7	5.7	to cycle.		
?	7.4	9.3	10.6	8.7	6.1	6.5	C Reach to object sumbled		
8	79	-01	11.5	9.3	6.5	7.2	with other objects in a		
9	8.3	108	12.2	9.9	6.9	7.9	group so that search and		
10	8.7	11.5	12.9	10.5	7.3	8.6	select occur.		
12	96	2.9	14.2	118	8.1	10.1]		
14	105	14.4	15.6	13.0	8.9	\$1.5	D Reach to a very small		
16	11 4	158	17.0	34.2	9.7	12.9	object of where accurate		
18	12.3	17.2	18.4	15.5	10.5	14.4	graso is required.		
20	131	186	19.8	16.7	113	15 B]		
22	14.0	20.1	21.2	18.0	12.1	17.3]		
24	14.9	21.5	22.5	19.2	12.9	18.6	E Reach to indefinite location to get hand in position for		
26	15.8	22.9	23.9	20.4	13.7	20.2	body balance or next		
28	16.7	244	25.3	21.7	14.5	21,7	motion or out of way.		
30	17.5	25.8	26.7	22.9	15.3	23.2	1 <u> </u>		
Additional	0.4	0.7	0.7	0.6		T	TMU per inch over 30 inches		

TABLE III A - TURN - T

	Time TMU for Degrees Turned							1			
Weight	30°	45°	60°	75°	90°	106°	120°	136°	150°	165°	180
Small • 0 to 2 Pounds	2.8	3.5	4.1	4.8	5.4	6.1	6.8	7,4	8.1	8.7	9.4
Medium - 2.1 to 10 Pounds	4.4	5.5	6.5	7.5	8.5	9.6	106	11.6	12.7	13.7	14.8
Large - 10.1 to 36 Pounda	8.4	10.5	12.3	14.4	16.2	16.3	20.4	22.2	24.3	26.1	26.2

TABLE V - POSITION* - P

CL	CLASS OF FIT		Easy to Handle	Difficult to Handle
		s	5.6	11.2
1-Loose	No pressure required	SS	9.1	14.7
		NS	10.4	16.0
2-Close		S	16.2	21.8
	Light pressure required	\$5	19.7	26.3
		NS	21.0	26.6
		\$	43.0	46.6
3-Exset	Heavy pressure required	55	46.5	52.1
		NS	47.8	53.4
	SUPPLEMENTARY RU	LE FOR SURF	ACE ALIGNMEI	47
P1SI	E per alignment: >1/16<1/4	-	P2SE per alignr	nent: <1/16"

TABLE II - MOVE - M

Distance	Tim	e TMU			WLA	llowance		11
Moved Inches		B	С	Hand in Motion B	Mr. (fb.) Up to	Dynamic Factor	Startic Con- stant TMU	CASE AND DESCRIPTION
3/4 or less	2.0	20	20	17				
1	2.5	29	3.4	23	25	1 00	١٥	A Move object to
2	3.6	46	5.2	2.9			 	other hand or
- 3	9 6 6	5.7	6.7	3.6	7.5	1.06	2.2	against stop.
4	61	6.9	8.0	43			1	·
5	7.3	5.0	9.2	50	12.5	1.11	39	
- 6	61	ê 9	10.3	5.7			1	11
7	8.9	9.7	11,1	6.5	17.5	1.17	5.6	8 Move object to
8	9.7	10 6	11.8	7,2				approximate or indefinite
. 9	10.5	11.5	12.7	7.9	22.5	1.22	7.4	location.
10	113	12.2	13.5	В6]
12	129	13.4	15 2	100	27.5	1.28	9.1	
	14.4	14.6	16 9	31.4	i]
16	16.0	15.8	18.7	12 B	32 5	1.33	10 B	ll
18	17.6	17.0	20.4	14.2	i		1	C Move object to
20	19.2	i .e 2	22.1	15.6	37.5	1 39	125	iocation.
22 -	20.8	19 4	23.8	170			i	11
24	22.4	20 6	25.5	18.4	42.5	1 44	14.3]]
25	24 0	21 8	27.3	198				11
28	25.5	23 1	29.0	21.2	47.5	1.50	16.0]]
30	27 1	24.3	30.7	22.7]
Additional	0.8	06	0.86			TMU pe	r inch over	30 inches

Source: Copyrighted by the MTM Association for Standards and Research. No reprint permission without written consent from the MTM Association, 1411 Peterson Avenue, Park Ridge, Illinois 60068.

Motion-based (MTM 1)

- MTM 1 è un sistema molto dettagliato e affidabile che si concentra sull'analisi dei movimenti delle due mani
- È adatto allo studio di lavorazioni ad altro grado d ripetitività con cicli molto brevi, quando errori di poche TMU potrebbero determinare grandi inconvenienti in produzione e di convenienza economica
 - □ Es. linee di montaggio freni automobile

Motionbased (MTM 1)

 Esempio di applicazione MTM 1 per avvitare 2 dadi e serrare con chiave

Left hand	TFI	Left hand	TMU	Right hand	TF	I Dialettered
description		movement	11010	movement		Right hand description
SCREW 2 BOLTS		movement	-	movement		uescription
Reach the bolt	-	R24C	12.5	R24C		Reach the bolt
Grasp		G4B	9.1	-		I Veach the bolt
			9.1	G4B		Grasp
Bolt to assembly		M24C	13.0	M24C		Bolt to assembly
Position 1 st bolt		P2SE	16.2	•		
Search thread	2	M2B	4.0	•		
		-	16.2	P2SE		Position 1st bolt
		-	4.0	M2B	2	Search thread
Release		RL1	2.0	RL1		Release
	8	R2A	16.0	R2A	8	h
fastening cycle {	8	G1A	16.0	G1A	8	fastening cycle
	8	M2B	16.0	M2B	8	
	0	RL1 Total	16.0 150.1	RL1	8	ľ
TIGHTEN 2 BOLTS		iutai	150.1			
WITH A WRENCH						
Reach the assembly	AND THE PERSON	R-A	12.8	R30B		Reach the
Treatment and assembly		1/77	12.0	ROUD		wrench
Grasp	A	G1A	3.5	G1B	PARTE SELECTION OF THE SERE	Grasp
		0 11 1	15.1	M3DC	1	Wrench to
				111000		assembly
			14.7	P1SSD		Position
			1.6	SC2		Static component
			10.9	M20B2		Screw
			11.7	M20C		Recovery with
						wrench
			14.7	P1SSD		Reposition
						wrench
			1.6	SC2		Static component
			9.6	M16B2		Screw
			10.6 13.3	APA Made		Tighten
			13.5	M30B		Recovery with wrench
			20	RL1		wrench Release
		Total	122.1	INLI	-	1/616926
		TOTAL	122.1			

Element-based (MTM 2)

- La famiglia degli Element-based è un derivato di MTM-1, corrispondente ad una semplificazione dei movimenti rilevati ed ad una specializzazione in settori diversi
 - Esistono una serie di sottofamiglie di specializzazione di settore, es.
 MTM-HC (per l'industria *healthcare*), MTM-C (per lavori di ufficio), MTM-M (per lavori al microscopio...)
 - MTM UAS è un sistema derivato da MTM-1 attraverso elaborazioni statistiche dei dati tabulati, che non distingue il movimento di dettaglio delle due mani

Element-based (MTM 2 – UAS)

■ Esempio di applicazione MTM 2 –UAS per avvitare 2 dadi e serrare con chiave

Description	Code	TMU	I F	TMU sum
SCREW 2 BOLTS				11110 00111
Grasp and position bolts	AF2	65		65
	AF1	40		40
Screw with hand	ZB1	10	8	80
		Total		185
TIGHTEN 2 BOLTS WITH A WRENCH	erentania (m. 1921). Para Propinsi Serentania	1274		
Grasp and reposition wrench	HB2	60	-	60
Screw	ZA1	5	Production of the Archaeology (Const.)	5
Reposition wrench	ZC1	30		30
Tighten	ZD	20	***************************************	20
		Total		115

Element-based (MTM 2 – MEK)

- Sistema derivato da MTM 1, concepito per essere applicabile velocemente mantenendo un sufficiente grado di precisione
- È il risultato di un aggregazione dei movimenti basilari di MTM 1 in elementi di movimentazione principali, pertanto appartiene alla famiglia degli *Element-based*
- Adatto a lavorazioni caratterizzate da notevoli variazioni del ciclo produttivo
 - □ Produzioni su commesse singole

M

Element-based (MTM 2 – MEK)

 Esempio di applicazione MTM 2 – MEK per smontaggio di una candela dal motore

Description	Code	TMU	F	TMU sum
DISMANTLING A SPARK PLUG				
Wire to side	AA3	50		50
Wrench to plug	HB3	100		100
Release	ZZ	30		30
Unscrew with a wrench	ZD	40	3	120
	ZB	20	2	40
Handly unscrew	BA3	30		30
	ZA	10	5	50
Plug to visual control	PA3	30		30
Control	VA	40		40
Plug to visual control	PA1	20		20
Control	VA	40		40
Plug to side	PA3	30		30
		Total		580

ŊΑ

Element-based (MTM-HC)

	GET and PLACE			<8	>8 <20	>20 <32
Weight	Conditions of get	Place accurancy	Code	1	2	3
		Approximate	AA	20	35	50
	Easy	Loose	AB	30	45	60
		Tight	AC	40	55	70
<2 Lbs	Difficult	Approximate	AD	20	45	60
		Loose	AE	30	55	70
		Tight	AF	40	65	80
	Handful	Approximate	AG	40	65	80

Element-based (MTM-HC)

- Esempio: versare una fiala di reagente in un esperimento di laboratorio ospedaliero (MTM-HC)
- HP:
 - □ peso della fiala < 2 libbre (lbs = 327 gr)</p>
 - □ Facile (get easy) accessibilità e presa
 - □ Posizionamento normalmente difficile (place accuracy approximate)
 - □ Range di distanza da 8 a 20 inch

Descrizione movimento	Codice	Tempo
Prendere la fiala dal contenitore	AA2	35
Togliere il tappo	AA2	35
Agitare la fiale, posizionarla sullo scarico	AD2	45
Versare (3 sec)	PT	83
Rimettere la fiala nel contenitore	PC2	40
0.0006 x 238 = 0,14 Tempo Standard Totale		238 TMU

- MOST (Maynard Operation Sequence Tecnique) è un sistema di MTM più rapido delle famiglie precedenti, poichè identifica delle attività principali e non dei movimenti singoli
- Naturalmente perde in livello di dettaglio e quindi precisione nell'elaborazione dei tempi standard
- MOST definisce non una serie di movimenti, ma una sequenza di eventi/attività che comportano dei movimenti
- Gli eventi base di MOST sono:
 - □ La sequenza di movimento di un oggetto
 - □ La sequenza di controllo di un oggetto
 - □ La sequenza di impiego di *tool* di un oggetto

- La sequenza di movimento di un oggetto è composta da 4 possibili sottoattività: Action distance (A, in orizzontale), Body motion (B, in verticale), Gain control (G), Placement (P)
- A fianco di ogni sottoattività si indica il tempo di esecuzione, che deriva (come negli altri metodi) da tabelle standardizzate secondo diversi parametri (es. numero di step all'interno della sottoattività)
 - □ Il tempo indicato in indice è 1/10 di una TMU standard
 - □ Il tempo standard si ricava come TMU + allowance factor, dove allowance factor = maggiorazione del tempo standard per riposo personale (P), fatica (F), rallentamenti diversi (D)
 - □ Solitamente l'allowance factor è almeno il 15% del tempo standard calcolato con MOST

M

- Ad esempio l'espressione MOST A₆ B₆ G₁ A₁ B₀ P₃ A₀ rappresenta l'attività "Cammina per tre passi e prendi un bullone dal pavimento, sollevalo e mettilo in una scatola", dove:
 - □ A₆:"cammina per tre passi fino alla posizione dell'oggetto"
 - □ B₆: "chinati ed alzati"
 - ☐ G₁: "prendi controllo dell'oggetto"
 - □ A₁: "muovi l'oggetto alla distanza che devi raggiungere"
 - \square B₀: "non muoverti"
 - □ P₃:"posiziona l'oggetto"
 - \Box A₀:"non ritornare"
- TMU = (6 + 6 + 1 + 1 + 0 + 3 + 0) * 10 = 170 TMU = 0,102 min
- Tempo standard = 0,102 min * 1,15 = 0,1173 min con allowance factor pari al 15%

- La seconda categoria di sequenza è quella del controllo: Muovi l'oggetto controllato (M), Passa un tempo di processamento (X), Allinea l'oggetto (I)
 - □ Ad esempio l'espressione MOST A₁ B₀ G₁ M₁ X₁₀ I₀ A₀ indica l'attività di impostazione di un parametro di controllo su una macchina (esempio fresatrice)
- La terza categoria di sequenza è quella dei tool (strumenti) da utilizzare nell'azione, in sostanza è l'aggregazione delle due precedenti sequenze per la creazione di una sequenza di utilizzo di un dato strumento
- MOST è a sua volta una famiglia di sistemi a livello di dettaglio diverso e di settore diverso (es. MOST per le attività di ufficio)

Activity-based (MOST)

Esempio di applicazione MOST

TEMPI STANDARD LAVORAZIONI ELETTRICHE

INSERZIONE TAPPO CON ROJONIC WW015

		INSE	RZIONE TA	PPO CO	N ROJONI	C WW01
DESCRIZIONE ATTIVITA'	NOTA	CODICE SEQUENZA	TEMPO CICLO SEC.	% MEDIA FATTORE RIPOSO	TOTALE TEMPO TP	TOTALE TEMPO TL
Attivare il sistema informatico e leggere a terminale le istruzioni	*	A1B0G1M3X32I0A0	13.32		14.52	1.0
Cliccare sul mouse per visualizzare posizione di inserzione.		A1B0G1M3X3I0A0	2.88	8		3.11
dentificare il foro illuminato sul connettore	1.7	A0B0G0A0B0P0T3A0B0P0A0	1.08		i i i i i i i i i i i i i i i i i i i	1.17
Spostare i cavi già inseriti per liberare il foro illuminato		A1B0G1A1B0P3A0 (F2)	4.32			4.66
Prendere il piolo e inserirlo nel foro del connettore illuminato da Rojonic		A1B0G1A1B0P3A0	2.16			2.27
Prendere l'insertore posizionarlo sul piolo e inserirlo, togliere e posare l'insertore sul banco		A1B0G1A1B0P6F3A1B0P1A0	5.04			5.44
Prendere il tappo e inserirlo nel foro del connettore illuminato da Rojonic		A1B0G1A1B0P3A0	2.16			2.27
Prendere l'insertore posizionarlo sul tappo e inserirlo, togliere e posare l'insertore sul banco		A1B0G1A1B0P6F3A1B0P1A0	5.04			5.44
Segnalare al sistema mediante mouse dell'operazione eseguita	*	A1B0G1M3X32I0A0	13.32		14.52	
						E.
	-					
			v 1,		3	
TOTALE TEMPO ASSEGNATO (SEC.) PER ATTIVITA' DI SETUP (TP) COMPRESA % PER FATTORE DI RIPOSO + 5% PER IMPREVISTI					30	
TOTALE TEMPO ASSEGNATO (SEC.) PER ATTIVITA' DI RUN (TL) COMPRESA % PER	FATTORE	DI RIPOSO + 5% PER IMPRE	VISTI		9	26

NOTA: (*) attivita' di setup da dividere per il n° di cavi componenti l'operazione

Vantaggi dei sistemi TSP

- I tempi standard possono essere valutati con precisione (di diverso grado a seconda della famiglia di MTM) prima dell'avvio della produzione
- Si possono paragonare senza metterle in atto più alternative sui cicli di lavoro
- Si riducono in via teorica le possibilità di errore nella registrazione dei tempi e delle prestazioni
- È di più facile applicazione ed è più economico dei sistemi di *Time Study*
- Solitamente sono accettati più facilmente dai sindacati

Svantaggi dei sistemi TSP

- È praticamente inapplicabile se le attività non sono molto ripetitive
- Nell'applicazione delle famiglie di maggior dettaglio (es. MTM 1) può risultare molto difficile il frazionamento del lavoro in micro-operazioni
- I parametri scelti per la determinazione dei tempi potrebbero non adattarsi a qualsiasi situazione lavorativa
 - □ I fattori che potrebbero introdurre una variabilità nei tempi di esecuzione sono potenzialmente illimitati, pertanto non tutti sono compresi nelle tabelle (es. MTM 1 non considera la forma dei pezzi da movimentare)