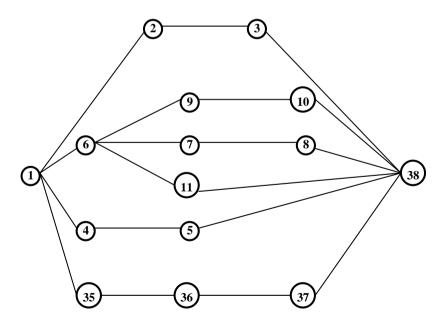

Dimensionamento linee assemblaggio

Linea di montaggio

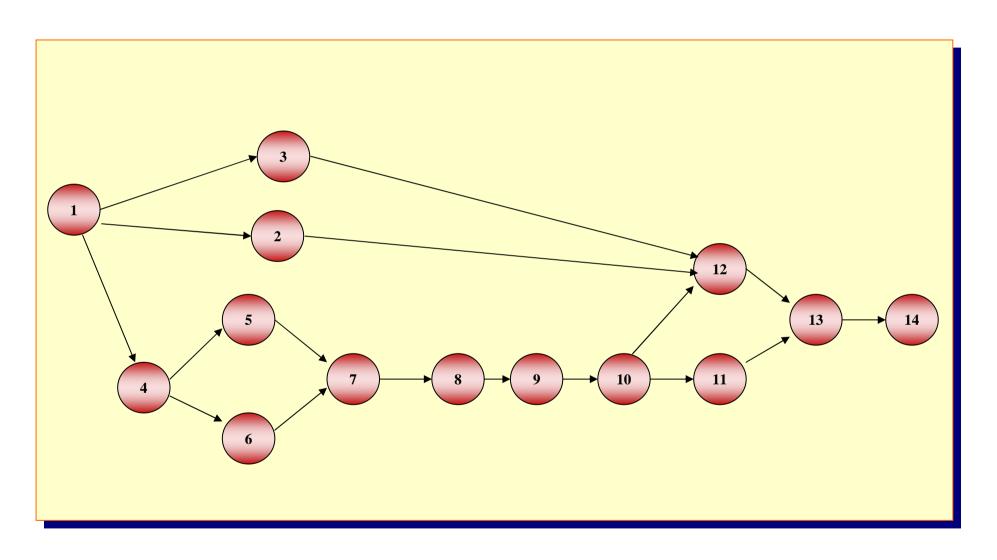
Nella linea le stazioni di montaggio sono messe in successione e l'assieme "cresce" spostandosi da una stazione alla successiva fino ad uscire completo dall'ultima stazione



- Progettare una linea di montaggio significa allocare le operazioni di montaggio alle singole stazioni
- La progettazione è un processo generativo, poiché una volta istituita una stazione ed inserite le operazioni da fare al suo interno, se ne deve istituire un'altra e così via di seguito fino all'esaurimento delle operazioni da allocare
- Fasi della progettazione di una linea di montaggio (manuale)
 - Definizione del grafo di montaggio
 - Predeterminazione dei tempi di esecuzione delle singole operazioni
 - □ Definizione del tempo di ciclo
 - Bilanciamento della linea
 - □ Dimensionamento della manodopera

- Definizione del grafo di montaggio
 - □ Definizione delle operazioni e delle relative precedenze

Ciclo e grafo di montaggio


- Il ciclo di montaggio può essere rappresentato su una tabella che contiene la lista delle operazioni di montaggio, ciascuna corredata delle informazioni tecniche rilevanti.
- In particolare è indicata la lista delle <u>precedenze</u>, che individuano la migliore sequenza di operazioni di montaggio realizzabile in funzione dell'attrezzatura a disposizione e della tipologia di assemblaggio scelta.
- Il grafo di montaggio rappresenta sinteticamente il ciclo, e consente di visualizzare la sequenza con cui le operazioni di montaggio vanno realizzate.

Ciclo di montaggio di un proiettore automobilistico

Op.	Descrizione (proiettore automobilistico)	Prec.	[min]
1	Collocare corpo proiettore su staffa supporto	-	0,7
2	Montare su corpo proiettore supporti fissi e perno	1	2,3
3	Montare su corpo proiettore supporto regolabile con tiranteria	1	4,2
4	Montare su corpo proiettore i contatti elettrici per innesto lampade	1	1,6
5	Montare su retro proiettore innesto rapido cavetteria alimentazione lampade	4	1,9
6	Montare e fissare parabola alluminata su corpo	4	1,4
7	Innestare lampada in sede	5,6	0,6
8	Prova elettrica proiettore	7	1,5
9	Deporre colla sigillante su parabola e lente	8	1,2
10	Incollaggio lente su parabola ed essiccazione colla	9	6,0
11	Prova tenuta proiettore	10	3,0
12	Prova assetto proiettore e regolazione fascio luminoso	2,3,10	4,5
13	Confezionamento in sacchetto di plastica	11, 12	0,4
14	Confezionamento in scatola cartone ondulato	13	0,7
	Totale		30,0

Ŋ.

Grafo di montaggio di un proiettore automobilistico

Indicazioni per la stesura del grafo

La stesura del grafo deve rispettare i seguenti vincoli:

- Legami fisici di precedenza tra le varie operazioni, dovuti al fatto che l'operazione i+1 può essere realizzata solo se l'operazione i è stata svolta
- Vincoli pratici che rendono più facilmente realizzabile una certa sequenza anziché un'altra, legati ad esempio:
 - All'alimentazione dei particolari alla linea
 - Alla necessità di ridurre gli ingombri degli assiemi sino alle stazioni terminali della linea
 - Alla impossibilità di duplicare attrezzature o postazioni
 - Alla minimizzazione del rischio di danneggiamento delle parti estetiche o delicate

- Predeterminazione dei tempi di esecuzione delle singole operazioni
 - Cronometraggio di più ripetizioni della medesima operazione
 - Scomposizione di ogni operazione in attività elementari e misurazione dei loro tempi di esecuzione – Motion Time Measurement (MTM)

- Definizione del tempo di ciclo
 - □ Il tempo di ciclo Tc, in fase di progettazione, deve essere calcolato come

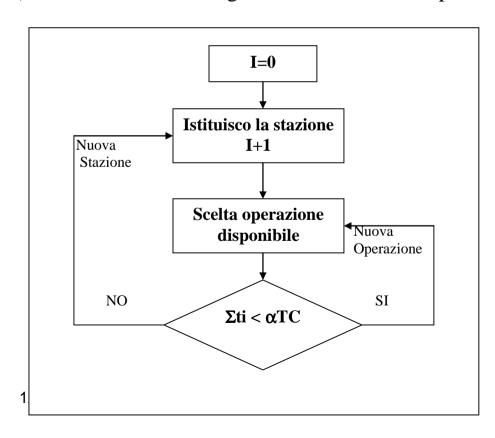
$$Tc = Hd/V$$

dove:

- Hd = ore annue disponibili (ore/anno)
- V = volume annuo di produzione richiesto (unità/anno)
- Si noti che Hd = Ha * Cip nelle linee manuali, in quanto le ore annue di apertura della linea (Ha = ore annue di lavoro) sono ridotte di un coefficiente di sicurezza (Cip) che tiene conto degli imprevisti del personale

- Definizione del tempo di ciclo
 - Il tempo di ciclo Tc, in fase di progettazione, deve essere calcolato come

$$Tc = Hd/V$$


dove:

- Hd = ore annue disponibili (ore/anno)
- V = volume annuo di produzione richiesto (unità/anno)
- Si noti che Hd = Ha * Cip nelle linee manuali, in quanto le ore annue di apertura della linea (Ha = ore annue di lavoro) sono ridotte di un coefficiente di sicurezza (Cip) che tiene conto degli imprevisti del personale

Bilanciamento della linea

a) Metodo del massimo grado di saturazione imposto

Numero minimo di stazioni

$$N_{\min} = \left[\frac{\sum_{j \in I} T_j}{TC \cdot \alpha} \right]^{+}$$

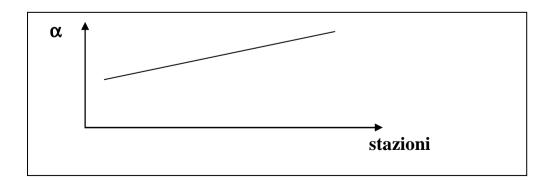
Tempo ammissibile

$$TA = \alpha \cdot TC$$

Dove:

-T_i: tempo completamento op. j

-A: massimo grado di saturazione


-I: insieme di tutte le operazioni

Su ogni stazione S dovrà risultare

$$\sum_{i \in S} t_i \le TA$$

- Bilanciamento della linea
 - Necessita di una opportuna scelta del tasso di saturazione α:
 - α piccolo = molte stazioni e bassa probabilità di generare incompleti
 - α elevato = meno stazioni ma più alta probabilità di generare incompleti

- Bilanciamento della linea
 - □ Non fornisce una soluzione univoca, in quanto la scelta di quale operazione tra quelle disponibili assegnare alla stazione corrente può essere fatta in relazione a differenti criteri.
 - Una possibile scelta è quella di utilizzare l'algoritmo euristico denominato RPWT (Ranked Positional Weight Technique)

Euristica RPWT

- Step 1. Si costruisce il grafo delle precedenze tra le operazioni.
- Step 2. Per ogni operazione i si determina l'insieme Si delle operazioni che la seguono, direttamente o indirettamente.
- Step 3. Per ogni operazione i si calcola il peso posizionale, dato dalla somma dei tempi di quella operazione e di quelle che appartengono a Si:

$$PW_i = t_i + \sum_{k \in S_i} t_k$$

- Step 4. Si sceglie l'operazione con il peso posizionale più alto e la si assegna alla prima stazione di lavoro.
- Step 5. Si sceglie l'operazione con il successivo peso più alto e la si assegna alla prima stazione di lavoro j ammissibile (quella per cui la somma dei tempi delle operazioni ad essa assegnati non superi la sua capacità Cj); se tale stazione non esiste, bisogna crearne una nuova.
- Step 6. Si ripete lo Step 5 fino a che tutte le operazioni siano state assegnate.