Lesson III: The Relationship among Spot, Fwd and Money Mkt Rates

Getting Started

I/S Decisions and

March 11, 2016

Table of Contents

Getting Started
I/B Decisions and Currencies of Denomination
Covered Interest Rate Parity
Definition
Deviations and Arbitrage Opportunities Building Synthetic Securities

Terminology

To Put It into Practice

Getting Started

International
Financial and Foreign Exchange

Markets

Getting Started
I/B Decisions and Currencies of
Denomination
Covered Interest
Rate Parity
Definition
Deviations and
Arbitrage
Opportunities
Building Synthetic
Securities
Terminology
To Put it into
Practice

Investing on an International Scale

Assume you have some funds to place in the money market for 3 months: how to choose between domestic and foreign currency-denominated securities?

Watch out!

Relying exclusively on interest rate differentials might be seriously misleading: both interest and exchange rates should be taken into due account

Domestic-Currency Denominated Investment

If you decide to invest in a USD-denominated security (assuming the USD is the domestic currency), at the end of the investment period you would get

$$
1+\frac{r_{U S D}}{4}
$$

I/B Decisions and Currencies of Denomination

Foreign-Currency Denominated Investment

If you conversely decide to invest in a foreign-currency denominated security (assume GBP), you would have to:

- Buy GBP, thus getting

$$
\frac{1}{S_{\frac{U S D}{G B P}}}
$$

- Invest the amount above in a GBP-denominated asset and get (at maturity)

$$
\frac{1}{S_{\frac{U S D}{G B P}}} \cdot\left(1+\frac{r_{G B P}}{4}\right)
$$

- Sell GBP forward in order to receive

$$
\frac{F_{0.25 \frac{U S D}{G B P}}}{S_{\frac{U S D}{G B P}}} \cdot\left(1+\frac{r_{G B P}}{4}\right)
$$

The Investor's Dilemma

You will be indifferent between the two options only if

$$
1+\frac{r_{U S D}}{4}=\frac{F_{0.25} \frac{U S D}{G B P}}{S_{\frac{U S D}{G B P}}} \cdot\left(1+\frac{r_{G B P}}{4}\right)
$$

Getting Started

I/B Decisions and Currencies of
Denomination
Covered Interest
Rate Parity
Definition
Deviations and
Arbitrage
Opportunities
Building Synthetic
Securities
Terminology
To Put It into
Practice

Playing with Algebra

Rearranging the terms we would get:

$$
r_{U S D}=r_{G B P}+4 \cdot \frac{F_{0.25} \frac{U S D}{G B P}-S_{\frac{U S D}{G B P}}}{S_{\frac{U S D}{G B P}}}
$$

With

- Annualised GBP interest rate: $r_{G B P}$
- Annualised fwd premium/discount on GBP:
$4 \cdot \frac{F_{0.25 \frac{U S D}{G B P}}-S_{\frac{U S D}{G B P}}}{S_{\frac{U S D}{G B P}}}$
premium/discount on GBP:

CIRP: Definition

More generally, if we allow for compound interest, an investor/ borrower would be indifferent between domestic and foreign currency denominations of investment or debt if

$$
\left(1+r_{D}\right)^{n}=\frac{F_{n \frac{D}{F}}}{S_{\frac{D}{F}}}\left(1+r_{F}\right)^{n}
$$

In Simpler Terms...

When steps have been taken to avoid foreign exchange risk by use of forward contracts (hence the term "covered"), rates of return on investments and costs of borrowing will be equal, irrespective of the currency of denomination (ceteris paribus)

Lifting the Curtain on the Ceteris Paribus Condition

There must be no frictions for the CIRP to hold perfectly, meaning no legal restrictions on the movement of K , no tax advantages among different countries...

Deviation from Equilibrium and Arbitrage Opportunities I

Suppose that

$$
\left(1+r_{D}\right)^{n}<\frac{F_{n} \frac{D}{F}}{S_{D}^{D}}\left(1+r_{F}\right)^{n}
$$

The best thing to do would be to borrow in your domestic currency and to invest simultaneously in a foreign currency-denominated security. At the end of the investment period, the hedged transaction will allow you to get more than required to repay the initial debt (i.e. you will receive more domestic currency)

Deviation from Equilibrium and Arbitrage Opportunities II

If, conversely,

$$
\left(1+r_{D}\right)^{n}>\frac{F_{n \frac{D}{F}}}{S_{\frac{D}{F}}}\left(1+r_{F}\right)^{n}
$$

The best thing to do would be to borrow foreign currency and to invest simultaneously in a domestic currency-denominated security. At the end of the investment period, the hedged transaction will allow you to get more than required to repay the initial debt

Deviations from Equilibrium: a Graphical Approach

International Financial and Foreign Exchange Markets

Getting Started

B Decisions and

 Currencies ofDenomination

Covered interest

Rate Parity

Definition

Deviations and

What Happens above the CIRP Line? I

For all the points lying above the equilibrium line (A, B and C), it must be that

$$
\left(r_{U S D}-r_{G B P}\right)<4 \cdot \frac{F_{n \frac{U S D}{G B P}}-S_{\frac{U S D}{G B P}}^{S} \frac{U S D}{G B P}}{}
$$

This further implies:

- Covered investment in GBP yields more than in USD
- Borrowing in USD is cheaper than covered borrowing in GBP

What Happens above the CIRP Line? II

The adjustment procedure driving A, B, and C down towards the equilibrium line works as follows:

- Borrow USD, thus tending to increase rusd
- Buy spot GBP with the borrowed USD, thus tending to increase $S_{\frac{U S D}{G B P}}$
- Buy a GBP-denominated security, thus tending to reduce $r_{G B P}$
- Sell the GBP investment proceeds forward for USD, thus tending to reduce $F_{0.25 \frac{U S D}{G B P}}$
Points 1 to 4 will all push A, B and C back down to the CIRP line

What Happens below the CIRP Line? I

For all the points lying below the equilibrium line (D, E and F), it must be that

$$
\left(r_{U S D}-r_{G B P}\right)>4 \cdot \frac{F_{n_{U S D}}-S_{\frac{U S D}{G B P}}}{S_{U S D}^{G B P}}
$$

This further implies:

- Covered investment in USD yields more than in GBP
- Borrowing in GBP is cheaper than covered borrowing in USD

International
Financial and
Foreign Exchange
Markets

What Happens below the CIRP Line? II

The adjustment procedure driving D, E, and F up towards the equilibrium line works as follows:

- Borrow GBP, thus tending to increase $r_{G B P}$
- Buy spot USD with the borrowed GBP, thus tending to decrease $S_{\frac{U S D}{G B P}}$
- Buy a USD-denominated security, thus tending to reduce rusD
- Sell the USD investment proceeds forward for USD, thus tending to increase $F_{0.25 \frac{\text { USD }}{G B P}}$
Points 1 to 5 will all push D, E and F back up to the CIRP line

Empirical Findings

Persistent deviations from the CIRP are unlikely to occur, because this would give rise to arbitrage opportunities (No Free Lunch Principle)

And What If We Included TC?

Covered investment/borrowing involve two FX transactions (one on the spot market and the other on the forward market).
Transaction costs have to be faced twice.
One may be lead to think there could be deviations from interest rate parity due to the extra transaction costs of investing/borrowing in foreign currency...

Is it always and necessarily so?

Case 1: Round-Trip Transactions

Getting Started

I/B Dectisions and Currencies of
Denomination

Covered interest

Rate Parity

Definition

Deviations and

STEP 3: the GBP amount obtained after Step 2 is placed in a GBP-denominated deposit

STEP 3:

Invest in GBP yielding $\mathrm{GBP}_{\mathrm{n}}$ after n -months...

Round-Trip Transactions and CIRP

Based on the CIRP,

$$
\left(1+r_{B U S D}\right)^{n}=\frac{F_{n} \frac{U S D}{b i G G B P}}{S \frac{U S D}{a s k G B P}} \cdot\left(1+r_{I G B P}\right)^{n}
$$

This is NOT a perfect equilibrium line on the CIRP diagram, but more a "band" drawn around mid-rates. This is because of the transactions costs to be faced:

- Bid/Ask spread: $S_{\frac{U S D}{a s k G B P}}-F_{n \frac{U S D}{b i d G B P}}$
- Borrowing/Investment spread: $\left(r_{B U S D}-r_{I G B P}\right)$

Case 2: One-Way Transactions I

If you need $G B P_{n}$ sometime in the future and you have
$U S D_{0}$ today, you could:

- Alternative 1: invest the USD you have in USD-denominated security and use the proceeds of the foregoing investment to buy GBP fwd (when they are needed)
- Alternative 2: sell the USD you have to buy GBP and invest them in a GBP-denominated security, yielding the GBP amount you need at maturity

Case 2: One-Way Transactions II

STEP 1: invest USD 0_{0} in a USDdenominated deposit

STEP 1: Invest in USD

STEP 1: sell USD for GBP on the spot mkt at S(\$/ask£)

STEP 2: Use the proceeds (USD_{n}) to buy GBP forward at $\mathbf{F}_{\mathbf{n}}$ (\$/ask $£$),
when GBP are needed.

STIPP 2: Use the proceeds to
buy GBP fwd

STEP 2: invest the GBP in a GBP-
denominated deposit yielding GBP $_{n}$ when GBP are needed.

STEP 2: Invest in GBP

International Financial and Foreign Exchange Markets

Getting Started

I/S Dectisions and Currencies of
Denomination
Covered Interest
Rate Parity
Definition
Deviations and Arbitrage
Opportunities
Building Synthetic Securities

Terminology
To Put it into
Practice

One-Way Transactions and CIRP

Based on the CIRP,

$$
\left(1+r_{I U S D}\right)^{n}=\frac{F_{n \frac{U S D}{a s k B P}}^{S}\left(1+r_{I G B P}\right)^{n}, ~}{\frac{\text { USD }}{a s k G B P}}
$$

This would plot an exact line in the CIRP diagram, given that there are virtually no transaction costs:

- Bid/Ask spread: $S_{\frac{U S D}{a s k G B P}}-F_{n \frac{U S D}{\text { askGBP }}}$
- Borrowing/Investment spread: $\left(r_{I U S D}-r_{I G B P}\right)$

Profit Opportunities are more Apparent than Real...

For round-trip arbitrages to be profitable, deviations from the CIRP line must be large enough to overcome transaction costs...and this will hardly ever occur in practice (Could you explain why?)

Transaction costs do not bring about profitable arbitrage opportunities

Synthetic Fwd I

Rearranging the CIRP...

$$
F_{n \frac{D}{F}}=S_{\frac{D}{F}} \cdot \frac{\left(1+r_{D}\right)^{n}}{\left(1+r_{F}\right)^{n}}
$$

Getting Started

i/S Dectisions and Currencies of
Denomination
Covered interest
Rate Parity

Definition

Deviations and
Arbitrage
Opportunities
Building Synthetic
Securities
Terminology
To Put It into
Practice

Synthetic Fwd II

- An n-period synthetic forward

$$
F_{n \frac{D}{F}}
$$

- ...can be constructed by combining a spot contract

$$
S_{\frac{D}{F}}
$$

- ...with fixed-rate, n-period borrowing and lending in the domestic and foreign currencies respectively.

$$
\frac{\left(1+r_{D}\right)^{n}}{\left(1+r_{F}\right)^{n}}
$$

Synthetic DC-denominated security

$$
\left(1+r_{D}\right)^{n}=\left(1+r_{F}\right)^{n} \cdot \frac{F_{n \frac{D}{F}}}{S_{\frac{D}{F}}}
$$

- A synthetic domestic currency-denominated security

$$
\left(1+r_{D}\right)^{n}
$$

- ... can be obtained by combining a foreign currency-denominated security

$$
\left(1+r_{F}\right)^{n}
$$

- ...with a forward/spot swap

$$
\frac{F_{n \frac{D}{F}}}{S_{\frac{D}{F}}}
$$

Some Lessons to Learn

The CIRP is useful:

- when trying to understand the direction of K movements (towards the currency with higher covered yield)
- to build/replicate a financial contract
- to hedge a financial position

Lessons Learned

Synthetic Securities

Synthetic Security: financial instrument that is created artificially by combining the features of a collection of other assets

I/B Decisions and Currencies of
Denomination
Covered Interest
Rate Parity
Definition
Deviations and
Arbitrage
Opportunities
Building Synthetic
Securities
Terminology
To Put It into
Practice

Round-Trip and One-Way Transactions

- Round-Trip Transaction: Borrowing in one currency, lending in another, and then selling the second currency back into the first so as to end up back in the first currency (id est, you start with a currency and you end up with the same one).
- One-Way Transaction: The process of choosing the best way to exchange one currency for another or choosing the best currency in which to invest or borrow (id est, you start with a currency and you end up with a different one).

To Put It into Practice I

3.1: Consider the following rates:

$\mathbf{S}_{\frac{c_{1}}{C_{2}}}$	0.64
$\mathbf{r}_{1 y-C_{1}}$	0.05
$\mathbf{r}_{1 y-C_{2}}$	0.09

- Calculate the theoretical price of a one year forward contract
- What would you do if the forward price was quoted at $F_{1 \frac{c_{1}}{c_{2}}}=0.65$ in the market place? Where would you borrow? Lend? Calculate the gain on a $\mathrm{C}_{1} 100$ million arbitrage transaction
- What would you do if the forward price was quoted at $\mathrm{F}_{1} \frac{c_{1}}{C_{2}}=0.6$ in the market place? Where would you borrow? Lend? Calculate the gain on a $\mathrm{C}_{2} 100$ million arbitrage transaction

To Put It into Practice II

3.2: The following exchange rates and one-year interest rates exist.

	Bid	Ask
$\mathbf{S}_{\frac{A}{B}}$	1.52	1.63
$\mathbf{F}_{1 \frac{A}{B}}$	1.42	1.53

	Deposit	Loan
\mathbf{r}_{A}	0.04	0.09
\mathbf{r}_{B}	0.05	0.1

You have 100 A to invest for 1 year. Would you benefit from engaging in covered interest arbitrage?

