

Financial Markets and Institutions

EIGHTH EDITION

Frederic S. Mishkin • Stanley G. Eakins

Appendix Chapter 15

The Interest Parity Condition

ALWAYS LEARNING

Interest Parity Condition

- The **interest parity condition** relates foreign/domestic interest rates with FX rates.
- Derived from expected returns.

Comparing Expected Returns on Domestic and Foreign Assets

- Can earn an interest rate of i^D on US dollars
- Can earn *i^F* on euros.
- E_t is the current exchange rate, and E_{t+1}^e is the expected exchange rate in one period.

Comparing Expected Returns on Domestic and Foreign Assets

 For an investor to be indifferent between investing in euros or dollars, the following must hold:

$$R^{D}$$
 in terms of euros = $i^{D} + \frac{E_{t+1}^{e} - E_{t}}{E_{t}}$

where *R^D* is the dollar expected return

Comparing Expected Returns on Domestic and Foreign Assets

 The expected return on dollar assets, R^D, is the rate on the dollar plus the expected appreciation of the dollar :

$$R^{D}$$
 in terms of euros = $i^{D} + \frac{E_{t+1}^{e} - E_{t}}{E_{t}}$

Comparing Expected Returns on Domestic and Foreign Assets

 The expected return on euro assets, R^F, is the rate on the euro minus the expected appreciation of the dollar :

$$R^{F}$$
 in terms of dollars = $i^{F} - \frac{E_{t+1}^{e} - E_{t}}{E_{t}}$

Interest Rate Parity

For an investor to be indifferent, the two must offer the same expected returns:

$$\mathbf{i}^{\mathsf{D}} = \mathbf{i}^{\mathsf{F}} - \frac{E_{t+1}^{e} - E_{t}}{E_{t}}$$

Interest Rate Parity: Example

 US and Japanese rates are 6% and 3%, respectively. What is the expected appreciation of the yen?

$$\mathbf{i}^{D} = \mathbf{i}^{F} - \frac{E_{t+1}^{e} - E_{t}}{E_{t}}$$

6% = 3% -
$$\frac{E_{t+1}^e - E_t}{E_t}$$
, or - $\frac{E_{t+1}^e - E_t}{E_t}$ = 3%