INTEREST RATE RISK

Luigi Vena
02/27/2017

Liuc - Carlo Cattaneo

TODAY'S AGENDA

- Interest Rate Risk \approx
- Managing Interest rate risk
- Duration
- Duration and Risk

International Financial Markets - 02/27/2017

Mishkin, Eakins - ch. 4

TODAY'S AGENDA

- Interest Rate Risk \nexists
- Managing Interest rate risk
- Duration
- Duration and Risk

International Financial Markets - 02/27/2017

Mishkin, Eakins - ch. 4

Finance Dictionary

Short Sale:
\square An arrangement with a broker to borrow and sell securities.
\square The borrowed securities are replaced with securities purchased later.
\square Short sale let investors earn profits from falling securities prices.
\square If prices increase, profits fall;
\square On the contrary profits grow up when prices fall.

Interest Rate Risk

Years to Maturity	Yearly Coupon	Price @2\%	Price @5\%	Price @8\%	Price @12\%
1	0	98.0392	95.2381	92.5925	89.2857
2	7.5	110.6786	104.6485	99.1083	92.3947
5	7.5	125.9240	110.8237	98.0036	83.7785
10	7.5	149.4042	119.3043	96.6449	74.574
20	7.5	189.9329	131.1555	95.0909	66.387
30	7.5	223.1805	138.4311	94.3711	63.7516

Face Value $=100$

Interest Rate Risk

\square A rise in interest rate is associated with a fall in bond prices.
\square On the contrary, a fall in interest rates is associated with a rise in bond prices.
\square The more distant a bond's maturity, the greater the size of price change associated with an interest rates change.
\square The more distant a bond's maturity, the lower the rate of return that occurs as a result of the increase in interest rates.
\square Even though a bond has a substantial interest rate its return can turn out to be negative if interest rates rise.

Interest Rate Risk

\square Suppose the following ZCB
\square Time to maturity: 5 years

- Price: 920
\square Face Value: 1000
- Suppose the all market interest rates are constant
\square Which is the expected rate of return of such bond?
\square Which is the actual rate of return if one year after the interest rate rises to 2.6816% ?

Interest Rate Risk

Years to Maturity	Yearly Coupon	delta $-\mathbf{3} \%$	delta $+3 \%$	delta $+7 \%$
1	0	2.94%	-2.78%	-6.25%
2	7.5	5.76%	-5.29%	-11.71%
5	7.5	13.63%	-11.57%	-24.40%
10	7.5	25.23%	-18.99%	-37.49%
20	7.5	44.82%	-27.50%	-49.38%
30	7.5	61.22%	-31.83%	-53.95%

Interest Rate Risk

\square Prices and returns for long-term bonds are more volatile tan those for shorter-term bonds.
\square Price variation of $+20 \%$ and -20% are common for bonds with more than 20 years away from maturity.
\square The riskiness of an asset's return resulting from interest rates changes is so important that it has been given a special name, interest rate risk.
\square Short term bonds have low interest rate risk.
\square On the contrary, long term bonds have substantial interest rate risk, as their prices change radically when interest rates vary.

Interest Rate Risk

\square In order to measure interest rate risk, financial managers need more precise information on the actual capital gain or loss that occurs when interest rate changes by a certain amount.
\square That is to say, the price variation due to a certain variation in interest rates level.
\square Moreover, the only maturity does not give too much information on the interest rate risk: two bonds with same maturity can have extremely different sensitivity to interest rates.
\square To do this, managers need to make use of the concept of duration.

TODAY'S AGENDA

- Interest Rate Risk
- Managing Interest rate risk
- Duration
- Duration and Risk

International Financial Markets - 02/27/2017

Mishkin, Eakins - ch. 4

Income Gap Analysis

- Income Gap Analysis: measures the sensitivity of a bank's current year net income to changes in interest rate.
\square Requires determining which assets and liabilities will have their interest rate change as market interest rates change. Let's see how that works for First National Bank.

Income Gap Analysis: Determining Rate Sensitive Items for First National Bank

Assets

- assets with maturity less than one year
\square variable-rate mortgages
- short-term commercial loans
\square portion of fixed-rate mortgages (say 20\%)

Liabilities

- money market deposits
- variable-rate CDs
- short-term CDs
- federal funds
\square short-term borrowings
- portion of checkable deposits (10\%)
portion of savings (20\%)

Income Gap Analysis - I case

Example: null gap. Gap $=0$
Risk Sensitive Assets - Risk Sensitive Liabilities $=0$

A null gap (=0) indicates that, whatever will be the interest rate variation, the net effect on banks income will be zero.

Risk Sensitive assets	Risk Sesnsitive Liabilities
Other Assets	Other Liabilities

Income Gap Analysis - II case

Example: positive gap. Gap >0

$$
\text { Risk Sensitive Assets - Risk Sensitive Liabilities > } 0
$$

Should the interest rate level rise, the bank may register an increase in the net income: new (higher) interest on assets more than cover new (higher) interest on assets.

Risk Sensitive Assets	Risk Sensitive Liabilities
	Other Liabilities
Other Assets	

Income Gap Analysis - III case

Esempio Gap Negativo. Gap < 0
Risk Sensitive Assets - Risk Sensitive Liabilities < 0

Should the interest rate level rise, the bank may register a decrease in the net income: new (higher) interest on assets less than cover new (higher) interest on assets.

Risk Sensitive Assets	Risk Sensitive Liabilities
Other Assets	

Income Gap Analysis - example

Assets	Liabilities		
Cash	5	Deposits (1y)	40
Short term loans (1y)	50	Deposits (5y)	50
Loans (2ys)	25	Short term debt (1 week)	40
ZCB (3 months)	30	Fixed-Coupon bond (5ys)	30
ZCB (6 months)	75	ZCB (3 months)	60
Fixed-Coupon bond (3ys)	20	ZCB (18 months)	60
Fixed-rate mortgages (10ys)	50	Equity	20
PP\&E	45		300

Income Gap Analysis

Recap:

Gap	ΔR	Δ int. receiveable		Δ int. payable	Δ income
>0	\uparrow	\uparrow	$>$	\uparrow	\uparrow
>0	\downarrow	\downarrow	$>$	\downarrow	\downarrow
<0	\uparrow	\uparrow	$<$	\uparrow	\downarrow
<0	\downarrow	\downarrow	$<$	\downarrow	\downarrow

Interest Rate Risk - A speculative approach

The interest rate risk exposure may be "actively" managed: if I expect a certain variation in interest rate levels...

Expected ΔR	Gap changes	
Increase	Enlarge a positive gap	Reduce a negative gap
Decrease	Reduce a positive gap	Enlarge a negative gap

TODAY'S AGENDA

- Interest Rate Risk \approx
- Managing Interest rate risk
- Duration
- Duration and Risk

International Financial Markets - 02/27/2017

Mishkin, Eakins - ch. 4

Duration

\square The Duration is the weighted average of the maturities of the cash payments.
\square In other words, it is the average lifetime of a debt security's stream of payments.

$$
D U R=\sum_{t=1}^{n} \frac{t * \frac{C F_{t}}{(1+r)^{t}}}{\sum_{t=1}^{n} \frac{C F_{t}}{(1+r)^{t}}}
$$

Duration

\square Given that:

$$
\sum_{t=1}^{n} \frac{C F_{t}}{(1+r)^{t}}=P
$$

\square The formula for the duration can be rewrited as:

$$
D U R=\sum_{t=1}^{n} \frac{t * \frac{C F_{t}}{(1+r)^{t}}}{P}
$$

Duration

Exercise

\square Compute the duration of the following bonds:
\square ZCB with constant $r=5 \%$, Face Value $=100$, and maturity 3 years;
\square Coupon bond with constant $r=5 \%, C=3$ (coupon frequency $=$ annual), Face Value $=100,3$ years to maturity.

- Coupon bond with constant $\mathrm{r}=5 \%, \mathrm{C}=15$ (coupon frequency $=$ annual), Face Value=100,3 years to maturity.

Duration

\square The formula for the duration is not so intuitive.
\square However it can be easily programmed into a calculator or computer.
\square All else being equal:
\square the longer is the term to maturity of a bond, the longer is its duration.
\square when interest rates rise, the duration of a coupon bond falls.
\square the higher the coupon rate on the bond, the shorter the bond's duration.
\square The duration of a portfolio of securities is the weighted average of the durations of the individual securities, with the weights reflecting the proportion of the portfolio invested in each.

Duration

Years to Maturity	Yearly Coupon	DUR @2\%	DUR @5\%	DUR @8\%	DUR @12\%
1	0	1.00	1.00	1.00	1.00
2	7.5	1.93	1.93	1.93	1.93
5	7.5	4.43	4.39	4.34	4.28
10	7.5	7.90	7.62	7.33	6.92
20	7.5	13.44	12.09	10.74	9.05
30	7.5	17.98	14.98	12.28	9.43

Face Value $=100$

TODAY'S AGENDA

- Interest Rate Risk

Duration

- Managing Interest rate risk

Duration and Risk

International Financial Markets - 02/27/2017

Mishkin, Eakins - ch. 4

Duration and Interest Rate Risk

\square Knowing how the duration can be computed, it is now time to see how it can be used to measure the interest rate risk.
\square Duration is a particularly useful concept as it provides a good approximation, especially when interest rate changes are small, for how much the security price changes for a given change in interest rates.
\square More precisely:

$$
\% \Delta P \approx-D U R * \frac{\Delta i}{1+i}
$$

Duration and Interest Rate Risk

\square The greater the duration of a security, the greater the percentage change in its market value for a given change in interest rates.
\square The greater the duration of a security, the greater its interest rate risk.
\square This reasoning applies equally to portfolio of securities.
\square Duration of ZCB equals the time to maturity.
\square Being equal the maturities of two bonds, the higher the coupon rate, the lower the duration.

$$
0 \leq D U R \leq \text { Time to maturity }
$$

Duration and Interest Rate Risk

Consider the following coupon bond:
\square Time to maturity: 3 years
\square Annual coupon rate: 5\%
\square Constant interest rate: 3.5\%
\square Face Value: 100
Suppose that the interest rate rise to 4.1%. Which is the correspondent price variation?

Show it, by using the duration and by discounting the CFs at the new interest rate.

Duration and Interest Rate Risk

Calculate the duration of the following coupon bond:
\square Time to maturity: 3 years
\square Annual coupon rate: 6\%

- Constant interest rate: 7\%
\square Face Value: 1,000
Calculate the expected price change if interest rates drop to 6.75%, using the duration approximation

Calculate the actual price change using discounted cash flow.

