FORWARD

Options

Long Call on IBM

Profit from buying an IBM European call option: option price = \$5, strike price = \$100, option life = 2 months

Short Call on IBM

Profit from writing an IBM European call option: option price = \$5, strike price = \$100, option life = 2 months

Long Put on Exxon

Profit from buying an Exxon European put option: option price = \$7, strike price = \$70, option life = 3 mths

Short Put on Exxon

Profit from writing an Exxon European put option: option price = \$7, strike price = \$70, option life = 3 mths

Payoffs from Options

X = Strike price, S_T = Price of asset at maturity

Terminology Moneyness :

- -At-the-money option
- -In-the-money option
- -Out-of-the-money option
- Expiration date
- Strike price
- European or American
- Call or Put (option class)

Types of Options

3.9

- Exchange-traded options
 - Stocks
 - Foreign Currency
 - Stock Indices
 - Futures
- Warrants
- Convertible bonds
- swapoptions

•

Warrants

- Warrants are options that are issued (or written) by a corporation or a financial institution
- The number of warrants outstanding is determined by the size of the original issue & changes only when they are exercised or when they expire

Warrants (continued)

Warrants are traded in the same way as stocks

When call warrants are issued by a corporation on its own stock, exercise will lead to new treasury stock being issued

Executive Stock Options

- Option issued by a company to executives
- When the option is exercised the company issues more stock
- Usually at-the-money when issued

Executive Stock Options continued

- They become vested after a period ot time
- They cannot be sold
- They often last for as long as 10 or 15 years

Convertible Bonds

 Convertible bonds are regular bonds that can be exchanged for equity at certain times in the future according to a predetermined exchange ratio

Convertible Bonds (continued)

- Very often a convertible is callable
- The call provision is a way in which the issuer can force conversion at a time earlier than the holder might otherwise choose

Exchangeable Bonds

- An exchangeable bond is a sort of convertible bond that provides the conversion into the shares of a company different from the issuer
- Usually, the underlying stock is the equity of a strategic partnership
- There can be adverse signalling problem which are reduced with "best of" structures

Trading Strategies Involving Options

Three Alternative Strategies

- Take a position in the option & the underlying
- Take a position in 2 or more options of the same type (A spread)
- Combination: Take a position in a mixture of calls & puts (A combination)

Positions in an Option & the 3.19 **Underlying**

basket of options

- spread type: basket of options of the same type (call or put)
 - bull spread
 - bearish spread
 - butterfly spread
- combination type: basket of options of different types
 - straddles

Bull Spread Using Calls

Bull Spread Using Puts

Bear Spread Using Calls

Bear Spread Using Puts

Butterfly Spread Using Calls

buy 2 calls and sell 2 calls

Butterfly Spread Using Puts

A Straddle Combination

bottom straddle

A 2nd Straddle Combination

A Strangle Combination

A Top Vertical Combination

3.30

4.31

Pricing: 1. binomial tree intuition

Intuizione per capire

K = S(0) $= \max [0; S(T) - S(0)]$ Call : Call = Su stato «up» S stato «down» : Call = 0Premio = Se fossimo «risk-neutral» $0.5* S* \sigma^* \sqrt{T}$ Premio = E (Call) = p * (Su -S) + (1-p)*0 = p *(Su -S) altre ipotesi statistiche: = 50% р Su = S(1+ $\sigma^*\sqrt{T}$) QUANTUM = S(1- $\sigma^* \sqrt{T}$) Sd

4.33

Pricing: 2. Black&Scholes

Approssimazione binomiale: $\sigma^* \sqrt{T}$

Black-Scholes (at-the-money):

Approssimazione Taylor 1 ordine: esempio: se T = 1; $\sigma = 30\%$ Premio = 0.12 * S se T = 0,25; $\sigma = 30\%$ Premio = 0.06 * S

Premio = $0.4^* \text{ S}^* \sigma^* \sqrt{T}$

Premio = $0.5^* S^*$

$$S\left[2N\left(\frac{\sigma\sqrt{\tau}}{2}\right)-1\right]$$

$$\begin{split} N(d) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{d} e^{-t^2/2} dt = \frac{1}{2} + \int_{0}^{d} \frac{e^{-t^2/2}}{\sqrt{2\pi}} dt \\ &= \frac{1}{2} + \frac{1}{\sqrt{2\pi}} \left\{ d - \frac{d^3}{6} + \frac{d^5}{40} - \dots + \dots \right\} \,. \end{split}$$

Premio =

QUANTUM

4.35

Pricing: 3.Monte Carlo

An Ito Process for Stock Prices (See pages 225-6)

 $dS = \mu S dt + \sigma S dz$

where μ is the expected return σ is the volatility.

The discrete time equivalent is

$$\Delta S = \mu S \Delta t + \sigma S \varepsilon \sqrt{\Delta t}$$

Monte Carlo Simulation

- We can sample random paths for the stock price by sampling values for $\boldsymbol{\epsilon}$
- Suppose μ = 0.14, σ = 0.20, and Δt = 0.01, then

$\Delta S = 0.0014S + 0.02S\varepsilon$

see simple_example.xls

Monte Carlo Simulation – One Path (continued. See Table 10.1)

Stock Price at Random Change in Stock Period Start of Period Sample for ε Price, ΔS 20.000 0.236 0.52 ()20.236 1 1.44 0.611 20.847 -0.86 2 -0.3293 20.518 1.46 0.628 21.146 -0.262 4 -0.69

Monte Carlo Simulation

When used to value European stock options, this involves the following steps:

- 1. Simulate 1 path for the stock price in a risk neutral world
- 2. Calculate the payoff from the stock option
- 3. Repeat steps 1 and 2 many times to get many sample payoff
- 4. Calculate mean payoff
- 5. Discount mean payoff at risk free rate to get an estimate of the value of the option

A More Accurate Approach

Use
$$d \ln S = (\hat{\mu} - \sigma^2/2) dt + \sigma dz$$

The discrete version of this is

$$\ln(S + \Delta S) - \ln(S) = (\hat{\mu} - \sigma^2 / 2) \Delta t + \sigma \varepsilon \sqrt{\Delta t}$$

or

$$S + \Delta S = S e^{(\hat{\mu} - \sigma^2/2) \Delta t + \sigma \varepsilon \sqrt{\Delta t}}$$

Extensions

When a derivative depends on several underlying variables we can simulate paths for each of them in a risk-neutral world to calculate the values for the derivative