EXCHANGE RATES I: PPP and THE MONETARY APPROACH IN THE LONG RUN

14

Exchange Rates and Prices in the Long Run 2 Money, Prices, and Exchange Rates in the Long Run 3 The Monetary Approach 4 Money, Interest, and

Money, Interest, and Prices in the Long Run 5

Monetary Regimes and Exchange Rate Regimes

6 Conclusions

Introduction to Exchange Rates and Prices

- Consider some hypothetical data on prices and exchange rates in the U.S. and U.K.:
 - Prices of U.S. and U.K. CPI baskets

```
    1970 P<sub>UK</sub>=£100
    1990 P<sub>UK</sub>=£110
    1970 P<sub>US</sub>=$175
    1990 P<sub>US</sub>=$175
```

Exchange rates (£/\$)

```
■ 1970 E_{\mathfrak{L}/\$}=0.57 1990 E_{\mathfrak{L}/\$}=0.63
```

Prices of baskets in common currency (U.S. \$)

```
• UK 1970 $175 (=£100/0.57)
1990 $175 (=£110/0.63)
```

- US \$175 in both years
- Relative purchasing power of the two currencies has remained the same
- Is it coincidence that the exchange rate and price levels adjusted in this way?

Introduction to Exchange Rates and Prices

- The ideas of arbitrage
 - Chapter 13: applied there to currencies and interest rates
 - Chapter 14: applied here to the goods market
- The prices of goods and services in different countries are related to the exchange rate.
 - When the relative prices of goods changes, the exchange rate adjusts to reflect this change (but this may take time).
- The monetary approach to exchange rates is the result.
 - A long run theory linking money, exchange rates, prices, and interest rates.
- The foundation of this theory is the fundamental arbitrage principle known as the law of one price.

The Law of One Price

- Key assumption frictionless trade
 - No transaction costs
 - No barriers to trade
 - Identical goods in each location
 - No barriers to price adjustment
- General idea:
 - Prices must be equal in all locations for any good when expressed in a common currency.
 - Otherwise, there would be a profit opportunity from buying low and selling high.

The Law of One Price

- Consider a single good, g, in 2 different markets.
- The law of one price (LOOP) states that the price of the good in each market must be the same.
- This is a microeconomic concept, applied to a single good, g.
- Relative price ratio for g:

$$\underline{q_{E/US}^g} = \underbrace{(E_{\$/\$}P_E^g)}/P_{US}^g$$
relative price of good g in Europe versus U.S. European price of good g expressed in \$ u.S. price of good g expressed in \$

The Law of One Price

If LOOP holds then (for each good g):

$$q_{E/US}^g = 1 \qquad \Longleftrightarrow \qquad E_{\$/\in} P_E^g = P_{US}^g$$

This means the price of good g is the same in Europe and in the U.S.

- What if LOOP doesn't hold?
 - Goods less expensive in U.S.

$$q_{E/US}^g > 1 \qquad \longleftrightarrow \qquad E_{\$/\in} P_E^g > P_{US}^g$$

Goods less expensive in Europe

$$q_{E/US}^g < 1 \qquad \leftrightarrow \qquad E_{\$/\in} P_E^g < P_{US}^g$$

Purchasing Power Parity

- Macroeconomic counterpart to LOOP.
 - If LOOP holds for every good in CPI basket, then the prices of the entire baskets must be the same in each locations.
- The purchasing power parity (PPP) theory states that these overall price levels in each market must be the same.
- Relative price level ratio:

$$\underline{q_{E/US}} = \underbrace{(E_{\$/\$}P_E)}/\underbrace{P_{US}}$$
relative price of basket of basket expressed in Europe versus U.S.
$$\underline{q_{E/US}} = \underbrace{(E_{\$/\$}P_E)}/\underbrace{P_{US}}$$

$$\underline{U.S. price of basket expressed in \$}$$

The Real Exchange Rate

The relative price level ratio q is an important concept.
 It is called the real exchange rate

$$\underline{q_{E/US}} = \underbrace{(E_{\$/\$}P_E)}/\underbrace{P_{US}}$$
relative price of basket of basket expressed versus U.S.
$$\underbrace{(E_{\$/\$}P_E)}/\underbrace{P_{US}}$$

$$\underbrace{(U.S. price of basket expressed in \$}$$

- Remember the key difference to avoid confusion.
 - Nominal exchange rate E is the ratio at which currencies trade.
 - Real exchange rate q is ratio at which goods baskets trade.
- However, the real exchange rate has some terminology in common with the nominal exchange rate...

Real Appreciation and Depreciation

$$\underline{q_{E/US}} = \underbrace{(E_{\$/\$}P_E)}/\underbrace{P_{US}}$$
relative price of basket of basket expressed versus U.S.

$$\underline{q_{E/US}} = \underbrace{(E_{\$/\$}P_E)}/\underbrace{P_{US}}$$
U.S. price of basket expressed in \$

- Changes in the real exchange rate:
 - If the real exchange rate rises
 - more home goods needed in exchange for foreign goods
 - intuitively called a real depreciation.
 - If the real exchange rate falls
 - fewer home goods needed in exchange for foreign goods
 - Intuitively called a real appreciation.

Overvaluation and Undervaluation

 Absolute PPP holds if and only if the real exchange rate equals 1:

$$E_{\$/\in}P_E = P_{US}$$
, or $q_{E/US} = 1$.

- What if absolute PPP does not hold?
 - If the real exchange rate is above one (by x %)
 - foreign (European) goods are relatively expensive
 - foreign currency (euro) is said to be overvalued (by x %).
 - why? euros are x% dearer than they would have to be to satisfy PPP.
 - If the real exchange rate is below one (by x %)
 - foreign (European) goods are relatively cheap
 - foreign currency (euro) is said to be undervalued (by x%).
 - why? euros are x% cheaper than they would have to be to satisfy PPP.

Absolute PPP, Prices, and the Nominal Exchange Rate

- We can now see that PPP supplies a reference level for the exchange rate.
 - Rearrange the PPP equation:

$$E_{\$/\$} = P_{US}/P_{E}$$
 exchange rate ratio of price levels

- PPP implies that the exchange rate at which two currencies trade is equal to the relative price levels of the two countries.
- PPP theory can be used to predict exchange rate movements – these simply reflect relative prices, so all we need to do is predict prices.

Relative PPP, Inflation, and Exchange Rate Depreciation

The absolute PPP equation:

$$E_{\$/\$} = \underbrace{P_{US}/P_{E}}_{\text{ratio of price levels}}$$

- If this is true in levels of exchange rates and prices, then it is also true in rates of change.
 - The rate of change in the exchange rate is the rate of depreciation in the home currency (U.S. \$):

$$\frac{\Delta E_{\$/\leqslant,t}}{E_{\$/\leqslant,t}} = \underbrace{\frac{E_{\$/\leqslant,t+1} - E_{\$/\leqslant,t}}{E_{\$/\leqslant,t}}}_{\text{rate of depreciation of the nominal exchange rate}}$$

Relative PPP, Inflation, and Exchange Rate Depreciation

 The rate of change in relative prices (P_{US}/P_E) is the home-foreign inflation differential:

$$\frac{\Delta P_{US,t}}{P_{US,t}} - \frac{\Delta P_{E,t}}{P_{E,t}} = \underbrace{\left(\frac{P_{US,t+1} - P_{US,t}}{P_{US,t}}\right)}_{\text{rate of inflation in U.S.}} - \underbrace{\left(\frac{P_{E,t+1} - P_{E,t}}{P_{E,t}}\right)}_{\text{rate of inflation in Europe}}$$

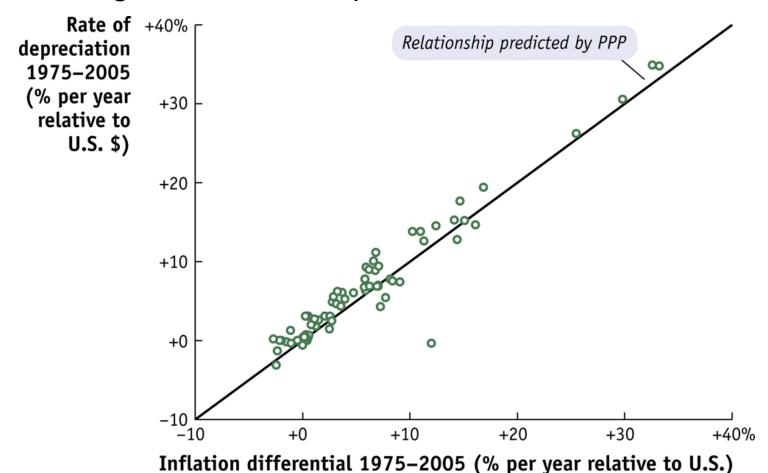
Result is Relative PPP

$$\frac{\Delta E_{\$/\in,t}}{E_{\$/\in,t}} = \underbrace{\pi_{US,t} - \pi_{E,t}}_{\text{inflation differential}}$$
 rate of depreciation of the nominal exchange rate

 Relative PPP implies that the rate of depreciation of the nominal exchange rate equals the inflation differential.

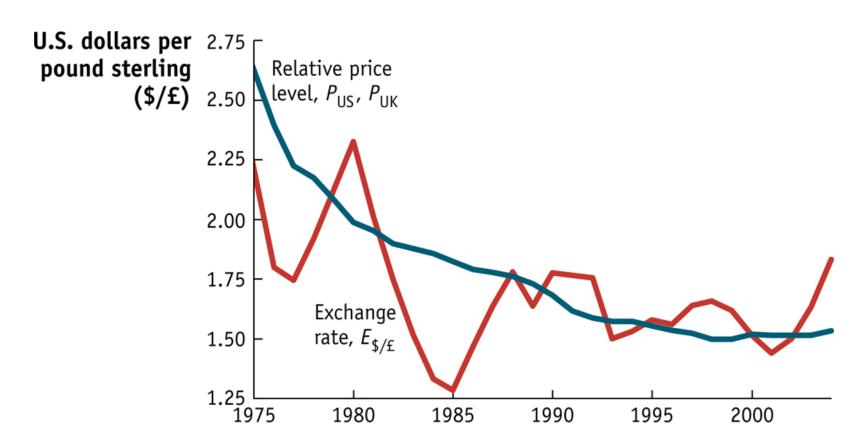
Relative PPP, Inflation, and Exchange Rate Depreciation

- Relative PPP is derived from Absolute PPP
 - If Absolute PPP holds then Relative PPP must hold also.


- But the converse need not be true: one could imagine a case where a basket always costs a fixed amount more, say, 10% in common currency terms in one country than the other:
 - In this case Absolute PPP fails, but Relative PPP holds.

Where Are We Now?

- The PPP theory, whether in absolute of relative form, suggests that price levels in different countries and exchange rates are tightly linked, either in levels or in rates of change.
- Stop and ask some questions:
 - Where do price levels come from?
 - Do the data support the theory of purchasing power parity?


Empirical Evidence on PPP

 According to relative PPP, the percentage change in the exchange rate should equal the inflation differential.

Empirical Evidence on PPP

 According to absolute PPP, relative prices should converge over time.

How Slow is Convergence to PPP?

- Two measures:
 - Speed of convergence: how quickly deviations from PPP disappear over time (estimated to be 15% per year).
 - Half-life: how long it takes for half of the deviations from PPP to disappear (estimated to be about four years).
- These estimates are useful for forecasting how long exchange rate adjustments will take.

Forecasting Real Exchange Rates

SIDE BAR

- If a currency is undervalued or overvalued, then the real exchange rate is not equal to one at all times.
 - We can allow for this by letting q change in the formulas we have derived.
 - From the definition of q:

$$\frac{\Delta E_{\$/\leqslant,t}}{E_{\$/\leqslant,t}} = \frac{\Delta q_{E/US,t}}{q_{E/US,t}} + \left(\pi_{US,t} - \pi_{E,t}\right)$$

Forecasting Real Exchange Rates

SIDE BAR

$$\frac{\Delta E_{\$/\$,t}}{E_{\$/\$,t}} = \frac{\Delta q_{E/US,t}}{q_{E/US,t}} + (\pi_{US,t} - \pi_{E,t})$$

- If q=1 is constant (PPP) then the 1st term on the right is zero.
 - To forecast the change in E you just need to forecast the inflation differential, as before.
- If q deviates from 1, and we can measure it, then we can use the convergence speed to estimate how quickly q will rise/fall towards 1.
 - This estimate of the rate of change of q can then be factored in, in addition to the inflation differential, to allow for an estimate of nominal depreciation.

Forecasting Real Exchange Rates

SIDE BAR

$$\frac{\Delta E_{\parallel/\ell,t}}{E_{\parallel/\ell,t}} = \frac{\Delta q_{E/US,t}}{q_{E/US,t}} + \left(\pi_{US,t} - \pi_{E,t}\right)$$

Example

- You find that US inflation is 3%, Eurozone inflation is 2%.
- Based on the inflation differential you predict a 1% rate of depreciation of the US dollar, or E to rise by 1%.
- Then you also discover that the US dollar is 10% overvalued against the euro (q=0.90), relative to a PPP value of 1.
- You expect 15% of that deviation of -0.1 to vanish in one year, so you expect q to rise (real depreciation) by 1.5%.
- Adding the inflation differential, you now expect E to rise by 2.5%.

What Explains Deviations from PPP?

Transaction costs

- Recent estimates suggest transportation costs may add about 20% to the cost of goods moving internationally.
- Tariffs (and other policy barriers) may add another 10%, with variation across goods and across countries.
- Further costs arise due to the time taken to ship goods.

Nontraded goods

- Some goods are inherently nontradable;
- Most goods fall somewhere in between freely tradable and purely nontradable.
 - For example: a cup of coffee in a café. It includes some highly-traded components (coffee beans, sugar) and some nontraded components (the labor input of the barista).

What Explains Deviations from PPP?

- Imperfect competition and legal obstacles (see Gandolfo)
 - Many goods are differentiated products, often with brand names, copyrights, and legal protection.
 - Firms can engage in price discrimination across countries, using legal protection to prevent arbitrage
 - E.g., if you try to import large quantities of a pharmaceuticals, and resell them, you may hear from the firm's lawyers.

Price stickiness

- One of the most common assumptions of macroeconomics is that prices are "sticky" prices in the short run.
- PPP assumes that arbitrage can force prices to adjust, but adjustment will be slowed down by price stickiness.

The Big Mac Index

<u>HEADLINES</u>

- For over 20 years The Economist newspaper has used PPP to evaluate whether currencies are undervalued or overvalued.
 - Recall, home currency is x% overvalued/undervalued when the home basket costs x% more/less than the foreign basket.
- The test is really based on Law of One Price because it relies on a basket with one good.
 - Invented (1986) by economics editor Pam Woodall. She asked correspondents around the world to visit McDonalds and get prices of a Big Mac, then compute price relative to the U.S.

The Big Mac Index

<u>HEADLINES</u>

"Big Mac in de'x =
$$q^{\text{Big M ac}} 1 = \frac{E_{\text{$}/\text{local currenoval}}}{P_{\text{US}}^{\text{Big M ac}}} - 1$$

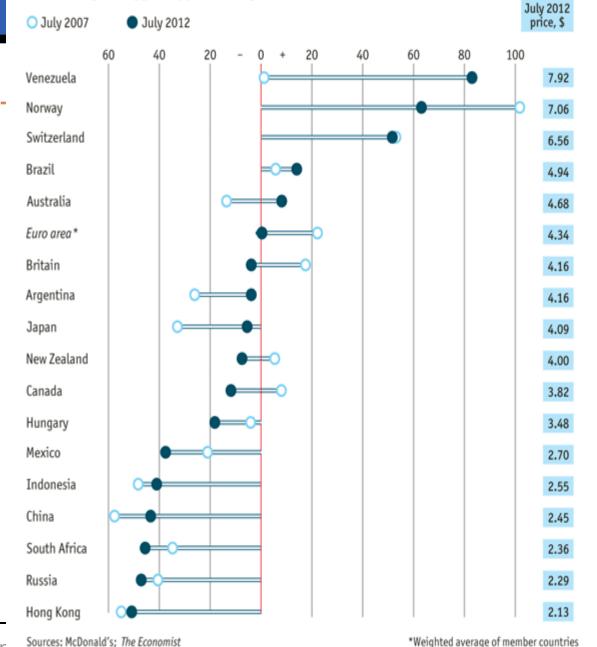
- The % deviation (+/–) from the US price measures the over/under valuation of the local currency based on the burger basket.
- Updated every year: <u>http://www.economist.com/markets/Bigmac/</u>
- In 2004 they tried the same exercise with another global, uniform product: the Starbucks tall latte.

The Big Mac index

Sources: McDonald's: The Economist

HEADLINES Big Mac index (based on market exchange rate: 21 July 2010)

	Big Mac prices*		Implied PPP†	Actual dollar exchange rate	Under(-)/over(+) valuation against
	in local currency	in dollars	of the dollar	July 21st	the dollar, %
United States‡	\$ 3.73	3.73			
Argentina	Peso 14.0	3.56	3.75	3.93	-5
Australia	A\$ 4.35	3.84	1.17	1.13	3
Brazil	Real 8.71	4.91	2.33	1.77	31
Britain	£ 2.29	3.48	1.63 §	1.52§	-7
Canada	C\$ 4.17	4.00	1.12	1.04	7
Chile	Peso 1,750	3.34	469	524	-10
China	Yuan 13.2	1.95	3.54	6.78	-48
Colombia	Peso 8,200	4.39	2,196	1,868	18
Costa Rica	Colones 2,000	3.83	536	522	3
Czech Republic	Koruna 67.6	3.43	18.1	19.7	-8
Denmark	DK 28.5	4.90	7.63	5.81	31
Egypt	Pound 13.0	2.28	3.48	5.70	-39
Estonia	Kroon 32.0	2.62	8.57	12.2	-30
Euro area**	€ 3.38	4.33	1.10 ††	1.28 ††	16
Hong Kong	HK\$ 14.8	1.90	3.96	7.77	-49
Hungary	Forint 740	3.33	198	222	-11
Indonesia	Rupiah 22,780	2.51	6,102	9,063	-33
Israel	Shekel 14.9	3.86	3.99	3.86	3
Japan	¥ 320	3.67	85.7	87.2	-2
Latvia	Lats 1.55	2.80	0.42	0.55	-25
Lithuania	Litas 7.30	2.71	1.96	2.69	-27
Malaysia	Ringgit 7.05	2.19	1.89	3.21	-41
Mexico	Peso 32.0	2.50	8.57	12.8	-33
New Zealand	NZ\$ 5.00	3.59	1.34	1.39	-4
Norway	Kroner 45.0	7.20	12.1	6.25	93
Pakistan	Rupee 210	2.46	56.3	85.5	-34
Peru	Sol 10.0	3.54	2.68	2.83	-54 -5
Philippines	Peso 102	2.19	27.3	46.5	-41
Poland	Zloty 8.30	2.60	2.22	3.20	-30
Russia	Rouble 71.0	2.33	19.0	30.4	-38
Saudi Arabia	Riyal 10.0	2.67	2.68	3.75	-36 -29
	S\$ 4.23	3.08	1.13	1.37	
Singapore	S\$ 4.23 Rand 18.5		4.94		-18
South Africa		2.45		7.54	-34
South Korea	Won 3,400	2.82	911	1,204	-24
Sri Lanka	Rupee 210	1.86	56.3	113	-50
Sweden	SKr 48.4	6.56	13.0	7.37	76
Switzerland	SFr 6.50	6.19	1.74	1.05	66
Taiwan	NT\$ 75.0	2.34	20.1	32.1	-37
Thailand	Baht 70.0	2.17	18.8	32.3	-42
Turkey	Lira 5.95	3.89	1.59	1.53	4
UAE	Dirhams 11.0	2.99	2.95	3.67	-20
Ukraine	Hryvnia 14.5	1.84	3.88	7.90	-51
Uruguay	Peso 79.0	3.74	21.2	21.1	nil


*At current exchange rates †Purchasing-power parity; local price divided by price in United States ‡Average of Atlanta, Chicago, New York and San Francisco \$Dollars per pound **Weighted average of prices in euro area ††

HEADLINES

Big Mac index (based on market exchange rate: July 2012)

Big Mac index

Local currency under (-)/over (+) valuation against the dollar, %

The Big Mac Index

HEADLINES

Our hot tips

Local currency under (-)/over (+) valuation against the dollar, %, using:

	Starbucks tall-latte index	McDonald's Big Mac index
Australia	-4	-17
Britain	+17	+23
Canada	-16	-16
China	-1	-56
Euro area	+33	+24
Hong Kong	+15	-45
Japan	+13	-12
Malaysia	-25	-53
Mexico	-15	-21
New Zealand	-12	-4
Singapore	+2	-31
South Korea	+6	0
Switzerland	+62	+82
Taiwan	-5	-21
Thailand	-31	-46
Turkey	+6	+5
Source: The Econo	omist	

PPP as a Theory of the Exchange Rate

In levels we have Absolute PPP:

$$E_{\$/\$} = \underbrace{P_{US}/P_{E}}_{\text{ratio of price levels}}$$

In rates of change we have Relative PPP

$$\frac{\Delta E_{\$/\leqslant,t}}{E_{\$/\leqslant,t}} = \pi_{US,t} - \pi_{E,t}$$
 inflation differential rate of depreciation of the nominal exchange rate

 Now we need to ask: where do the price levels (and inflation rates) come from?