Analisi Bivariata

Metodi Quantitativi per Economia, Finanza e Management

Esercitazione n°4

Lavoro di gruppo

- Attendere la validazione del questionario via mail e procedere alla somministrazione dello stesso
- Argomenti da trattare nel lavoro di gruppo:
 - Analisi Univariata
 - Analisi Biyariata
 - Test Statistici
 - Analisi Fattoriale
 - Regressione Lineare
 - Regressione Logistica

Lavoro di gruppo – Schema di valutazione

Topics

1. Introduzione

- 1.1. Definizione Obiettivi di Ricerca
- 1.2. Descrizione del Contesto
- 1.3. Definizione della Popolazione
- 1.4. Disegno del Campione
- 1.5. Fieldwork

2. Analisi Preliminari

- 2.1. Controllo Rappresentatività del Campione
- 2.2. Analisi Univariate
- 2.3. Analisi Connessione
- 2.6. Analisi Correlazione
- 2.7. ANOVA

3. Analisi Fattoriale

- 3.1. Scelta Numero dei fattori
- 3.2. Interpretazione dei fattori

4. Regressione Lineare

- 4.1. Definizione obiettivo di analisi
- 4.2. Scelta variabili di input
- 4.3. Valutazione bontà del modello
- 4.4. Analisi Multicollinearità
- 4.5. Interpretazione del modello

5. Regressione Logistica

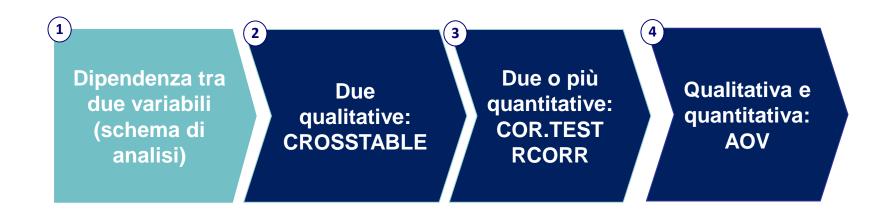
- 5.1. Definizione obiettivo di analisi
- 5.2. Scelta variabili di input
- 5.3. Valutazione bontà del modello
- 5.4. Analisi Multicollinearità
- 5.5. Interpretazione del modello

6. Conclusioni

7. Layout

Prima di iniziare...

- Controllare se sul pc su cui state lavorando esiste già una cartella C:\corso. In tal caso eliminare tutto il contenuto. In caso contrario creare la cartella corso all'interno del disco C
- Andare sul disco condiviso F nel percorso
 F:\corsi\Metodi_Quantitativi_EFM_1617\esercitazione4 e copiare il contenuto nella cartella C:\corso
- Aprire il programma R(Start → All Programs → R→ R 3.3.1)
- Cambiare la directory di lavoro puntando il percorso fisico C.\corso, utilizzando l'istruzione


```
setwd('C:/Corso')
```

 Importare il file CSV telefonia.csv nell'oggetto R telefonia con il comando

```
telefonia=read.csv('telefonia.csv', header=TRUE)
```

Metodi Quantitativi per Economia, Finanza e Management

Obiettivi di questa esercitazione:

Analisi Bivariata

Studio della distribuzione di due variabili congiuntamente considerate e delle relazioni esistenti tra esse

OBIETTIVO:

studiare la relazione di dipendenza/indipendenza tra due variabili. L'analisi d'indipendenza dipende dalla natura delle variabili:

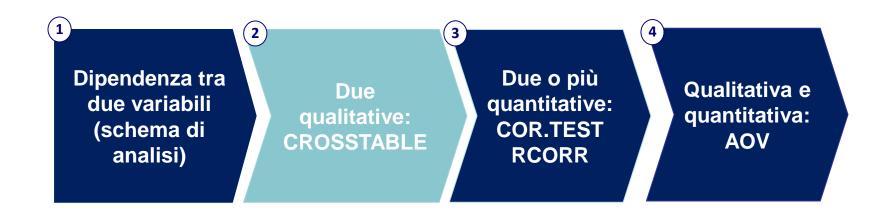
Due Variabili Qualitative Indipendenza Statistica (indici Chi Quadro, Cramer V)

CROSSTABLE

Due o più Variabili Quantitative Indipendenza Lineare (indice: coeff. di correlazione lineare)

COR.TEST RCORR

Una Qualitative e Una Quantitativa continua


Indipendenza in media (indice: eta-quadro)

AOV

Metodi Quantitativi per Economia, Finanza e Management

Obiettivi di questa esercitazione:

Riepilogo teorico (1/2)

X e Y due variabili qualitative/quantitative discrete

<u>Tabelle di Contingenza:</u>

tabelle a doppia entrata; i valori riportati all'interno della tabella sono le frequenze congiunte assolute (numero di osservazioni per ogni combinazione di modalità di X e Y).

Colore degli occhi\Colore dei Capelli	Biondi	NonBiondi	Totale
Chiari	21	19	40
NonChiari	9	51	60
Totale	30	70	100

NB: come vedremo R riporta nell'output anche le distribuzioni marginali (somme per riga e per colonna) e le frequenze relative congiunte (frequenza assoluta congiunta / numero di osservazioni totali)

Riepilogo teorico (2/2)

Indipendenza Statistica:

se al variare di X le distribuzioni subordinate $(Y|X=x_i)$ sono tutte uguali tra loro, si può concludere che la distribuzione di Y non dipende da X. Nel caso di indipendenza statistica, la frequenza relativa congiunta è pari al prodotto delle marginali corrispondenti

$$P(x_i,y_j)=P_x(x_i)P_y(y_j)$$

<u>Indici di connessione:</u>

- χ² (chi-quadrato) assume valore nullo se i fenomeni X e Y sono indipendenti. Tende a crescere, al crescere del numero di osservazioni.
- Cramer V: basato sul χ², è un indice relativo (non risente del numero di osservazioni). Assume valori compresi tra 0 e 1: 0 nel caso di indipendenza statistica, e tende a crescere all'aumentare del grado di dipendenza delle variabili considerate.

CrossTable - Descrizione

La CROSSTABLE permette di

 Creare tabelle di contingenza a due o più dimensioni per variabili qualitative e quantitative discrete

2. Calcolare indici di dipendenza relativi a tabelle di contingenza (tra cui chi-quadrato e Cramer V)

CrossTable – Sintassi generale

Distribuzione di frequenza bivariata (tabelle di contingenza)

CrossTable(nome_dataset\$nome_variabile1

, nome_dataset\$nome_variabile2,

prop.chisq=FALSE)

È un'opzione che inseriremo sempre

N.B. Per usare questa funzione è necessario richiamare la libreria **descr**, scaricata nella lezione 3.

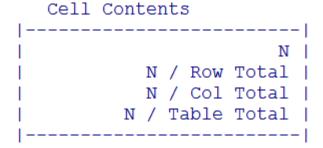
CrossTable – Esempio 1

Variabili qualitative: sesso e operatore telefonico

CrossTable(telefonia\$sesso,
 telefonia\$operatore,
 prop.chisq=FALSE)

Output CrossTable - Esempio 1

> CrossTable(telefonia\$sesso, telefonia\$operatore, prop.chisq=FALSE) Cell Contents Distribuzioni marginali: frequenze marginali assolute N / Row Total N / Col Total e relative N / Table Total telefonia\$operatore telefonia\$sesso Vodafone Tim Tre Wind Total 63 100 Frequenze congiunte assolute 0.030 0.070 0.630 0.424 0.583 0.200 0.409 Frequenze congiunte relative-0.030 0.267 0.013 91 12 136 Frequenze 0.669 0.206 0.037 0.088 0.576 0.591 0.509 0.417 subordinate 0.800 0.386 0.021 0.051 di riga e colonna Total 12 236 55 154 15 0.233 0.051 0.653 0.064


Output CrossTable - Esempio 1

> CrossTable(telefonia\$sesso,telefonia\$operatore, prop.chisq=FALSE) Cell Contents N / Row Total N / Col Total N / Table Total freq. marginale assoluta=28+5+91+12 telefonia\$operatore telefonia\$sesso Tim Vodafone Tre Wind Total freq. subordinate: 63 27 100 0.270 0.070 0.630 0.030 0.424 di riga=27/100 0.491 0.583 0.409 0.200 0.114 0.030 0.267 0.013 di col=27/55 28 91 12 136 0.206 0.037 0.669 0.088 0.576 0.509 0.417 0.591 0.800 0.119 0.021 freq. marginale relativa=(28+5+91+12)/236 55 12 Total 154 15 236 0.233 0.051 0.653 0.064

freq. congiunta relativa = (28/236)

Output CrossTable - Esempio 1

> CrossTable(telefonia\$sesso,telefonia\$operatore, prop.chisq=FALSE)

Indipendenza Statistica:

se al variare di X le distribuzioni subordinate $(Y|X=x_i)$ sono tutte uguali tra loro, si può concludere che la distribuzione di Y non dipende da X. Nel caso di indipendenza statistica, la frequenza relativa congiunta è pari al prodotto delle marginali corrispondenti

$$P(x_i,y_j)=P_x(x_i)P_y(y_j)$$

		telefo	nia\$oper	atore		
telefonia\$ses:	so 	Tim	Tre	Vodafone	Wind	Total
F	_	27	7	63	3	100
Frequenze		0.270	0.070	0.630	0.030	0.424
•	7	0.491	0.583	0.409	0.200	
subordinate		0.114	0.030	0.267	0.013	
 М		28	 5	 91	12	136
		0.206	0.037	0.669	0.088	0.576
		0.509	0.417	0.591	0.800	
		0.119	0.021	0.386	0.051	
Total		55 0.233	12 0.051	154 0.653	15 0.064	236
		0.233	0.031	0.655	0.064	

CrossTable - Esempio 2

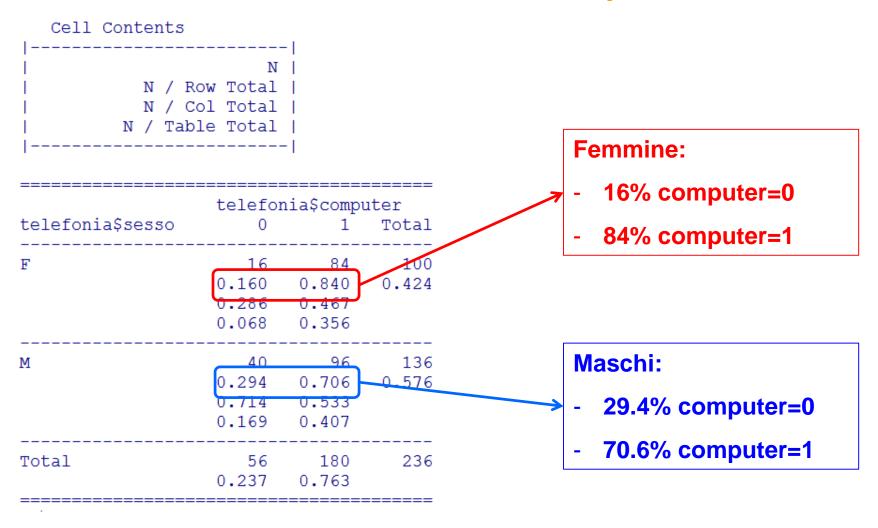
C'è indipendenza statistica tra le variabili sesso del rispondente (SESSO) e possesso del computer (COMPUTER)?

```
CrossTable(telefonia$sesso,
  telefonia$computer,
  prop.chisq=FALSE)
```


CrossTable- Esempio 2

Cell Contents					
I				N	
I	N	/	Row	Total	
I	N	/	Col	Total	
l N	/	Τā	able	Total	

telefonia\$sesso	telefo:	nia\$compu 1	ıter Total
F	16 0.160 0.286 0.068	84 0.840 0.467 0.356	100 0.424
М	40 0.294 0.714 0.169	96 0.706 0.533 0.407	136 0.576
Total	56 0.237	180 0.763	236


Da cosa possiamo dedurre la presenza di dipendenza/ indipendenza tra le due variabili?

Le variabili sono indipendenti se la distribuzione della variabile "possesso computer" non è influenzata dal sesso...

... Ovvero la distribuzione di chi possiede il computer da chi non lo possiede non varia tra maschi e femmine e corrisponde alla distribuzione marginale della variabile computer

CrossTable – Esempio 2

Le distribuzioni sono diverse, ci fa pensare alla presenza di dipendenza tra le due variabili!

CrossTable – Esempio 2

NB: <u>la relazione di dipendenza è simmetrica</u>. Anche analizzando la dipendenza del sesso dalla variabile computer osserviamo un'influenza

Cell Contents			
	N W Total l Total e Total	· 	
telefonia\$sesso	telefon	======= nia\$compu 1	uter Total
F	16 0.160 0.286 0.068	84 0.840 0.467 0.356	100 0.424
М	40 0.294 0.714 0.169	96 0.706 0.533 0.407	136 0.576
Total	56 0.237	180 0.763	236

Computer=0:

- 28.6% F
- 71.4% M

Computer=1:

- 46.7% F
- 53.3% M

Per quantificare il grado di connessione tra le due variabili calcoliamo gli indici di connessione

CrossTable - Descrizione

La CROSSTABLE permette di

 Creare tabelle di contingenza a due o più dimensioni per variabili qualitative e quantitative discrete

2. Calcolare indici di dipendenza relativi a tabelle di contingenza (tra cui Chi-quadrato e Cramer V)

Chi quadrato – Sintassi generale

Calcolo dell'indice Chi-quadro

```
CrossTable(nome_dataset$variabile1,
  nome_dataset$variabile2,
  prop.chisq=FALSE, options)
```

OPTIONS:

chisq=TRUE = calcola l'indice chi-quadro

Esempio n°1- Indice Chi-Quadro

C'è indipendenza statistica tra le variabili sesso del rispondente (SESSO) e possesso del computer (COMPUTER)?

```
CrossTable(telefonia$sesso,
  telefonia$computer,
  prop.chisq=FALSE, chisq=TRUE)
```


Esempio n°1- Indice Chi-Quadro

Cell Contents

1				N
1	N	/	Row	Total
1	N	/	Col	Total
l N	/	Τā	able	Total

telefonia\$sesso	telefonia\$computer 0 1 Total				
F	16 0.160 0.286 0.068	84 0.840 0.467 0.356	100 0.424		
М	40 0.294 0.714 0.169	96 0.706 0.533 0.407	136 0.576		
Total	56 0.237	180 0.763	236		

Come valutiamo la presenza di indipendenza?

→ Test d'ipotesi (PROSSIMA LEZIONE)

Statistics for All Table Factors

Indice di Cramer V – sintassi generale

Calcolo dell'indice di Cramer V:

CramerV(nome_dataset\$variabile1,nom
 e_dataset\$variabile2)

N.B. Per calcolare l'indice di Cramer V è necessario scaricare il pacchetto **DescTools**

e ricordarsi di richiamarlo (*library(DescTools)*)

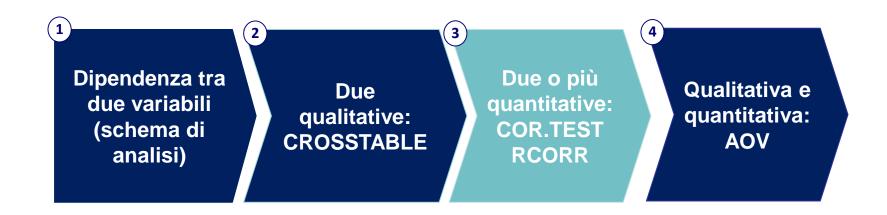
```
> library(DescTools)
Warning message:
package 'DescTools' was built under R version 3.3.1
```


Esempio n°1- Indice di Cramer V

C'è indipendenza statistica tra le variabili sesso del rispondente (SESSO) e possesso del computer (COMPUTER)?

CramerV(telefonia\$sesso,
 telefonia\$computer)

> CramerV(telefonia\$sesso, telefonia\$computer)
[1] 0.1557848


Come valutiamo la presenza di indipendenza?

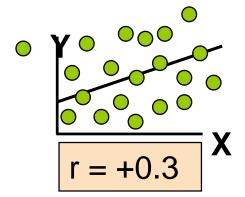
→ Test d'ipotesi (PROSSIMA LEZIONE)

Metodi Quantitativi per Economia, Finanza e Management

Obiettivi di questa esercitazione:

Riepilogo teorico

X e Y due variabili quantitative


Indaghiamo la presenza di una relazione lineare tra le due variabili

Coefficiente di correlazione lineare $\rho(X,Y)$: $\rho = Corr(X,Y) = -\frac{1}{2}$

$$\rho = Corr(X, Y) = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$$

 $\rho = 0 \rightarrow$ non c'è relazione lineare tra X e Y

 $\rho > 0 \rightarrow$ relazione lineare positiva tra X e Y

 $\rho < 0 \rightarrow$ relazione lineare negativa tra X e Y

Correlazione tra due variabili cor.test - Descrizione

La funzione cor.test permette di

calcolare la correlazione tra due variabili quantitative

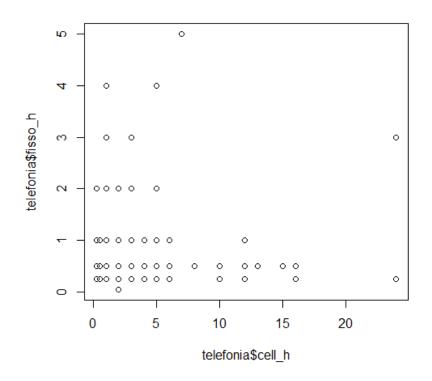
cor.test(nome_dataset\$variabile1,
 nome_dataset\$variabile2)

cor.test - Esempio

Correlazione tra il numero medio di ore di utilizzo del telefono cellulare e del fisso al giorno

cor.test(telefonia\$cell_h,
telefonia\$fisso_h)

Output cor.test - Esempio


Coefficiente di correlazione lineare $\rho(X, Y)$: presenza di relazione lineare positiva

Output cor.test - Esempio

Se vogliamo visualizzare la correlazione tramite un grafico, possiamo fare un *plot* della distribuzione delle due variabili in essere.

plot(telefonia\$cell_h,
 telefonia\$fisso_h)

Correlazione tra più variabili rcorr - Descrizione

La funzione *rcorr* permette di calcolare la correlazione tra più di due variabili quantitative, creando così una matrice di correlazione. La diagonale di tale matrice avrà sempre correlazione 1.

```
rcorr(as.matrix(nome_dataset_new))
```

Per svolgere questa funzione:

- E' necessario creare un **subset** contenente <u>solo le variabili di interesse</u> su cui applicare l'analisi di correlazione.
- È necessario scaricare il pacchetto **Hmisc**

Correlazione tra più variabili rcorr - Descrizione

L' output della funzione **rcorr** è una lista di elementi di seguito descritti:

- r : è la matrice di correlazione
- n : è la matrice che contiene il numero di osservazioni per ogni coppia di variabile analizzata
- p : p-values corrispondenti al livello di significatività delle osservazioni

rcorr - Creazione di un subset

Creazione di un subset

Per creare un nuovo dataset con le solo variabili di interesse, la sintassi è la seguente:

rcorr - Esempio

Vogliamo calcolare la correlazione tra le seguenti variabili:

- durata media delle chiamate effettuate [durata_chiamate_e] e:
- durata media delle chiamate ricevute [durata_chiamate_r]
- numero medio di ore di utilizzo del telefono cellulare al giorno [cell_h]
- numero medio di ore di utilizzo del telefono fisso al giorno [fisso h]

rcorr - Esempio

Creazione di un subset

```
tel=telefonia[,c("durata_chiamate_r",
    "durata_chiamate_e", "fisso_h","cell_h")]
```

rcorr- Installazione pacchetto

Installare il pacchetto Hmisc è richiamarlo.

library(Hmisc)

```
> library(Hmisc)
Loading required package: lattice
Loading required package: survival
Loading required package: Formula
Loading required package: ggplot2

Attaching package: 'Hmisc'

The following objects are masked from 'package:base':
    format.pval, round.POSIXt, trunc.POSIXt, units

Warning messages:
1: package 'Hmisc' was built under R version 3.3.1
2: package 'ggplot2' was built under R version 3.3.1
```


rcorr - Esempio

Correlazione tra più variabili

rcorr(as.matrix(tel))

```
> rcorr(as.matrix(tel))
                 durata chiamate r durata chiamate e fisso h cell h
                                                0.\overline{7}9 \quad 0.\overline{2}8
                                                               0.32
                              1.00
durata chiamate r
durata chiamate e
                              0.79
                                                1.00 0.25 0.23
fisso h
                                               0.25 1.00 0.24
                              0.28
cell h
                              0.32
                                               0.23 0.24 1.00
n
                  durata chiamate r durata chiamate e fisso h cell h
                                                         208
                                                                236
durata chiamate r
                               236
                                                 236
durata chiamate e
                                                 236
                                                         208 236
                               236
fisso h
                               208
                                                 208
                                                         208 208
cell h
                               236
                                                 236
                                                         208
                                                                236
Ρ
                 durata chiamate r durata chiamate e fisso h cell h
                                                     0e+00 0e+00
durata chiamate r
                                   0e+00
durata chiamate e 0e+00
                                                     3e-04 3e-04
fisso h
                 0e+00
                                   3e-04
                                                             4e-04
cell h
                                   3e-04
                                                     4e-04
                 0e+00
```

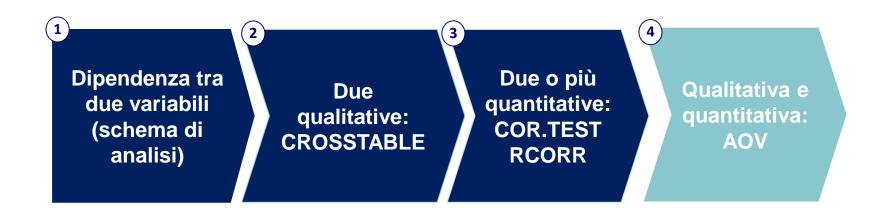

Output rcorr - Esempio

> rcorr(as.matrix(tel)) durata chiamate r durata chiamate e fisso h cell h durata chiamate r 1.00 durata chiamate e 1.00 fisso h 0.25 1.00 0.23 0.24 cell h 1.00 n durata chiamate r durata chiam 236 durata chiamate r durata chiamate e 236 fisso h 80 208 cell h 236 Ρ 9 elefonia\$durata_chiamate durata chiamate r durata chiam durata chiamate r 0e + 00durata chiamate e 0e+00 fisso h 0e+00 3e-04 cell h 3e-04 0e+0020 20 40 60 80 telefonia\$durata chiamate e

Correlazione - Game

http://guessthecorrelation.com/

DEW GAME
TWO PLATERS
SCORE BOARD
ABOUT
SETTINGS



Metodi Quantitativi per Economia, Finanza e Management

Obiettivi di questa esercitazione:

Riepilogo teorico (1/4)

X variabile qualitativa e Y variabile quantitativa

Indaghiamo la relazione esistente confrontando le medie aritmetiche della variabile Y (quantitativa) sui gruppi di osservazioni generati dalle modalità assunte dalla variabile X (qualitativa)

Esempio:

X: sesso

Y: reddito

Le due variabili sono *indipendenti in media* se il reddito medio delle donne non è significativamente diverso dal reddito medio degli uomini

Riepilogo teorico (2/4)

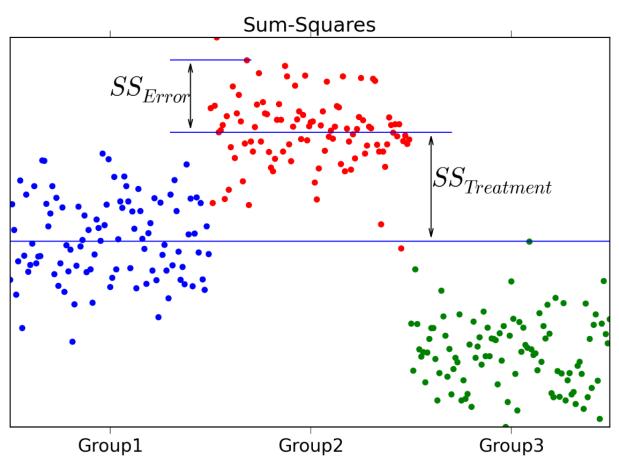
X variabile qualitativa e Y variabile quantitativa

$$SQT_y = SQ_{tra} + SQ_{nei}$$

dove

SQT_y somma dei quadrati degli scarti di ogni valore dalla media generale (media reddito generale)

SQ_{tra} somma dei quadrati degli scarti di ogni media di gruppo (media reddito donne, media reddito uomini) dalla media generale (media reddito generale)


SQ_{nei} somma degli scarti al quadrato di ogni valore dalla media del suo gruppo (media reddito donne o media reddito uomini)

Riepilogo teorico (3/4)

X variabile qualitativa e Y variabile quantitativa

$$SQT_y = SQ_{tra} + SQ_{nei}$$

Riepilogo teorico (4/4)

X variabile qualitativa e Y variabile quantitativa

Indice relativo per misurare la dipendenza in media:

$$\eta^2 = SQ_{tra} / SQT_y = 1 - (SQ_{nei} / SQT_y)$$

- $\eta^2 = 0 \Rightarrow$ indipendenza in media
- $\eta^2 > 0 \Rightarrow$ dipendenza in media
- $\eta^2 = 1 \Rightarrow$ massima dipendenza in media

 η^2 è sempre compreso tra 0 e 1.

ANOVA

R prevede diversi modi per condurre l'analisi della varianza (ANOVA), utilizzata per confrontare le medie e le varianze di due o più gruppi di dati, per valutare se tali differenze sono statisticamente significative.

L'Anova si utilizza quindi quando la variabile o le variabili indipendenti sono di tipo categoriale, e la variabile dipendente è numerica.

aov – Sintassi generale (1/2)

Sia Y una variabile quantitativa e X una variabile qualitativa

→ è il simbolo TILDE, da tastierino numerico tenere premuto ALT e digitare
 126 (ALT+126)

aov – Sintassi generale (2/2)

Sia Y una variabile quantitativa e X una variabile qualitativa

anova=aov(y~x, data=nome_dataset)

OUTPUT 1:

model.tables(anova, type="means")

OUTPUT 2:

summary(anova)

Esempio

C'è relazione tra la soddisfazione del cliente (SODDISFAZIONE_GLOBALE) e l'operatore telefonico da lui scelto (OPERATORE)?

aov(soddisfazione_globale~operatore,
data=telefonia)

Esempio: Output 1

La media della soddisfazione globale sembra molto vicina tra i diversi gruppi

Esempio: Output 2

Interpretazione:

Nella tabella i valori riportati sono:

- Df = gradi di libertà
- Sum Sq = devianza (alla riga operatore, entro gruppi, alla riga Residuals, residua)
- Mean Sq = varianza (come sopra)
- F value = test F: Mean Sq entro gruppi / Mean Sq residua
- Pr(>F) = p-value

Ai fini dell'interpretazione, si deve ricordare che l'ipotesi nulla è che le varianze siano uguali fra di loro, e che dunque la variabile indipendente non produca effetti sulla variabile dipendente

Esempio: Output 2

Interpretazione:

Ai fini dell'interpretazione, si deve ricordare che l'ipotesi nulla è che le varianze siano uguali fra di loro, e che dunque la variabile indipendente non produca effetti sulla variabile dipendente

La probabilità che sia vera l'ipotesi nulla è indicata dal valore Pr (p-value). Nel caso in esempio, la relazione non è significativa (accettiamo H0) ed quindi le due variabili sono quasi perfettamente indipendenti.

Eta-Quadro

X variabile qualitativa e Y variabile quantitativa

Indice relativo per misurare la dipendenza in media:

$$\eta^2 = SQ_{tra} / SQT_y = 1 - (SQ_{nei} / SQT_y)$$

- $\eta^2 = 0 \Rightarrow$ indipendenza in media
- $\eta^2 > 0 \Rightarrow$ dipendenza in media
- $\eta^2 = 1 \Rightarrow$ massima dipendenza in media

 η^2 è sempre compreso tra 0 e 1.

Per calcolare l'indice η^2 in R, bisogna scaricare il pacchetto *lsr* e richiamarlo.

library(lsr)

etaSquared - Sintassi

etaSquared(nome_dataset_generato_da_aov)

Anche il valore di eta-quadro è molto vicino a 0 →avvalora l'ipotesi di indipendenza in media

NB: per una valutazione più oggettiva rimandiamo alla prossima lezione (test d'ipotesi)

Dataset

Il dataset DENTI contiene dati sul consumo di dentifricio (di marca A e di marca B). Le variabili sono:

#	Variable	Type	Label
1	CODCLI	Num	CODICE CLIENTE
2	SESSO	Char	SESSO
3	ETACLASS	Char	CLASSE DIETA'
4	REGIONE	Char	REGIONE ITALIANA
5	PRESBAMB	Char	PRESENZA BAMBINI (1:SI/2:NO)
6	TRATTOT	Num	CLIENTE ABITUALE DI DENTIFRICI SI/NO
7	ALTOCON	Num	ALTO CONSUMANTE SI/NO
8	CONSTOT	Num	TOTALE CONSUMO DI DENTIFRICI NEL PERIODO
9	ACQTOT	Num	TOTALE ACQUISTI DI DENTIFRICI NEL PERIODO
10	STOCKTOT	Num	TOTALE ACCUMULO DI DENTIFRICI NEL PERIODO
11	TATTITOT	Num	NUMERO DI CONTATTI PUBBLICITARI TOTALI
12	TRIP	Num	PERIODO OSSERVAZIONE
13	CITYSIZE	Char	DIMENSIONE CITTA' DI RESIDENZA IN CLASSI
14	AREA	Char	AREA GEOGRAFICA
15	ACQ_A	Num	ACQUISTI DI DENTIFRICI DELLA MARCA A NEL PERIODO
16	STOCK_A	Num	ACCUMULO DI DENTIFRICI DELLA MARCA A NEL PERIODO
17	CONS_A	Num	CONSUMO DI DENTIFRICI DELLA MARCA A NEL PERIODO
18	TRAT_A	Num	CLIENTE ABITUALE DI DENTIFRICI DELLA MARCA A SI/NO
19	TATTI_A	Num	NUMERO DI CONTATTI PUBBLICITARI (DENTIFRICI MARCA A)
20	ACQ_B	Num	ACQUISTI DI DENTIFRICI DELLA MARCA B NEL PERIODO
21	STOCK_B	Num	ACCUMULO DI DENTIFRICI DELLA MARCA B NEL PERIODO
22	CONS_B	Num	CONSUMO DI DENTIFRICI DELLA MARCA B NEL PERIODO
23	TRAT_B	Num	CLIENTE ABITUALE DI DENTIFRICI DELLA MARCA B SI/NO
24	TATTI_B	Num	NUMERO DI CONTATTI PUBBLICITARI (DENTIFRICI MARCA B)

Esercizi

- 1. Allocare la DIRECTORY DI LAVORO (che punta alla cartella che contiene il file DENTI.CSV)
- 2. Utilizzare la procedura corretta per analizzare la relazione di indipendenza tra <u>area geografica e sesso</u>
- 3. Utilizzare la procedura corretta per analizzare la relazione di indipendenza tra le variabili consumo di dentifrici della marca A e numero di contatti pubblicitari totali
- 4. Utilizzare la procedura corretta per analizzare la relazione di indipendenza tra la variabile consumo di dentifrici della marca A e area geografica e confrontarla con quella tra consumo di dentifrici della marca A e dimensione della città di residenza.