Outline

Case study 2 "Mechoff"

Design of manufacturing systems - Cellular Manufacturing

- Top management's questions
- Solution: objective, procedure, alternatives
- Concluding remarks

MECHOFF - Top Management's questions

$>$ Is it possible to meet the demand with manufacturing cells?
If yes, some questions to be answered may be:
> How many machines do I need?
> How many fixtures do I need?

MECHOFF - Draft solution

Objective

To evaluate the alternative to switch from a job shop configuration to cellular manufacturing

Assumptions:

- Products from the same family share the same fixture, built to take advantage of similar shapes:
\rightarrow this brings to an expected saving in setup times;
\rightarrow set-up times in cells 25% of the job shop one.
- The lot size can be half of the job shop case, thanks to the shorter set up times, obtaining lower WIP.
- These assumptions do not hold for those operations that are performed outside the due cell (the so called "exceptions").

MECHOFF - Draft solution

Procedure

The following steps can be followed to find the best solution:

1. Use the ROC algorithm to identify the machine groups that will compose the cells;
2. Evaluate the number of machines of each type to be used in the cells;
3. Evaluate the number of fixtures that are needed for each product family (on each machine type within the cell).

MECHOFF - ROC algorithm by King

Given:
j= product index;
$i=$ machine index; $\quad M=$ number of machines;
$a_{i j}=1$ if product j needs operation on machine i , otherwise $\mathrm{a}_{\mathrm{ij}}=0$;

1. Per each row compute the rank number:

$$
R_{i}=\sum_{j=1}^{P}\left(a_{i j} * 2^{P-j}\right)
$$

2. Reorder rows by decreasing values of Ri (top to bottom);
3. Per each column compute the rank number:

$$
C_{j}=\sum_{i=1}^{M}\left(a_{i j} * 2^{M-i}\right)
$$

4. Reorder columns by decreasing values of Cj (left to right);
5. Repeat steps 1 to 4 until no reordering of columns or rows is needed.

MECHOFF - Application of ROC (King)

In PRACTICE: having the products on rows or on columns is the same

		i=1,.., M	1	2	3	4	5	
		$2^{\wedge}(\mathrm{M}-\mathrm{i})$	16	8	4	2	1	
j=1,.., P	$2^{\wedge}(\mathrm{P}-\mathrm{j})$		M1	M2	M3	M4	M5	Rj
1	131072	PZ1	1	1	0	0	0	24
2	65536	PZ2	1	0	1	1	0	22
3	32768	PZ3	1	1	0	1	0	26
4	16384	PZ4	1	0	1	1	0	22
5	8192	DI1	1	1	0	1	1	27
6	4096	DI2	1	1	0	1	1	27
7	2048	DI3	1	0	0	1	1	19
8	1024	DI4	0	1	0	1	1	11
9	512	DI5	1	0	0	1	0	18
10	256	RO1	0	0	1	0	1	5
11	128	RO2	0	0	1	0	1	5
12	64	RO3	0	0	1	0	1	5
13	32	RO4	0	0	1	0	1	5
14	16	RO5	0	0	1	0	1	5
15	8	SP1	1	1	0	0	1	25
16	4	SP2	1	1	0	0	1	25
17	2	SP3	1	1	0	0	1	25
18	1	SP4	1	1	0	0	1	25

MECHOFF - Application of ROC (King)

	M1	M2	M3	M4	M5	Rj reordered	
131072	DI1	1	1	0	1	1	27
65536	DI2	1	1	0	1	1	27
32768	PZ3	1	1	0	1	0	26
16384	SP1	1	1	0	0	1	25
8192	SP2	1	1	0	0	1	25
4096	SP3	1	1	0	0	1	25
2048	SP4	1	1	0	0	1	25
1024	PZ1	1	1	0	0	0	24
512	PZ2	1	0	1	1	0	22
256	PZ4	1	0	1	1	0	22
128	DI3	1	0	0	1	1	19
64	DI5	1	0	0	1	0	18
32	DI4	0	1	0	1	1	11
16	RO1	0	0	1	0	1	5
8	RO2	0	0	1	0	1	5
4	RO3	0	0	1	0	1	5
2	RO4	0	0	1	0	1	5
1	RO5	0	0	1	0	1	5
	Cj	262080	261152		799	230368	227519

- Reorder rows;
- Rank columns

MECHOFF - Application of ROC (King)

	M1	M2	M4	M5	M3	Rj	
DI1	1	1	1	1	0	30	Reorder
DI2	1	1	1	1	0	30	Reorder
PZ3	1	1	1	0	0	28	columns;
SP1	1	1	0	1	0	26	
SP2	1	1	0	1	0	26	Re-rank
SP3	1	1	0	1	0	26	rows
SP4	1	1	0	1	0	26	
PZ1	1	1	0	0	0	24	
PZ2	1	0	1	0	1	21	
PZ4	1	0	1	0	1	21	
DI3	1	0	1	1	0	22	
DI5	1	0	1	0	0	20	
DI4	0	1	1	1	0	14	
RO1	0	0	0	1	1	3	
RO2	0	0	0	1	1	3	
RO3	0	0	0	1	1	3	
RO4	0	0	0	1	1	3	
RO5	0	0	0	1	1	3	
Cj reordered	262080	261152	230368	227519	799		

MECHOFF - Application of ROC (King)

	M1	M2	M4	M5	M3	Rj reordered	
DI1	1	1	1	1	0	30	- Reorder
DI2	1	1	1	1	0	30	rows;
PZ3	1	1	1	0	0	28	
SP1	1	1	0	1	0	26	- Re-rank
SP2	1	1	0	1	0	26	columns
SP3	1	1	0	1	0	26	
SP4	1	1	0	1	0	26	
PZ1	1	1	0	0	0	24	
DI3	1	0	1	1	0	22	
PZ2	1	0	1	0	1	21	\downarrow
PZ4	1	0	1	0	1	21	
DI5	1	0	1	0	0	20	The order must not be
DI4	0	1	1	1	0	14	changed:
RO1	0	0	0	1	1	3	
RO2	0	0	0	1	1	3	\rightarrow this is the final matrix
RO3	0	0	0	1	1	3	
RO4	0	0	0	1	1	3	
RO5	0	0	0	1	1	3	
Cj	262080	261152	230368	227903	415		

MECHOFF - Solution of ROC (King) 1

Solution with no duplication of resources

Cell 1
Cell 2
Exceptions

	M1	M2	M4	M5	M3
DI1	1	1	1	1	0
DI2	1	1	1	1	0
PZ3	1	1	1	0	0
SP1	1	1	0	1	0
SP2	1	1	0	1	0
SP3	1	1	0	1	0
SP4	1	1	0	1	0
PZ1	1	1	0	0	0
DI3	1	0	1	1	0
PZ2	1	0	1	0	1
PZ4	1	0	1	0	1
DI5	1	0	1	0	0
DI4	0	1	1	1	0
RO1	0	0	0	1	1
RO2	0	0	0	1	1
RO3	0	0	0	1	1
RO4	0	0	0	1	1
RO5	0	0	0	1	1

MECHOFF - Solution of ROC (King) 2

Solution with duplication of resources

Cell 1
Cell 2
Exceptions

	M1	M2	M4	M5 BIS	M3	M5
DI1	1	1	1	1	0	0
DI2	1	1	1	1	0	0
PZ3	1	1	1	0	0	0
SP1	1	1	0	1	0	0
SP2	1	1	0	1	0	0
SP3	1	1	0	1	0	0
SP4	1	1	0	1	0	0
PZ1	1	1	0	0	0	0
DI3	1	0	1	1	0	0
PZ2	1	0	1	0	1	0
PZ4	1	0	1	0	1	0
DI5	1	0	1	0	0	0
DI4	0	1	1	1	0	0
RO1	0	0	0	0	1	1
RO2	0	0	0	0	1	1
RO3	0	0	0	0	1	1
RO4	0	0	0	0	1	1
RO5	0	0	0	0	1	1

MECHOFF - Solution of ROC (King) 2

Solution with duplication of resources

Cell 1
Cell 2
Exceptions

We take this configuration

	M1	M2	M4	M5 BIS	M3	M5
DI1	1	1	1	1	0	0
DI2	1	1	1	1	0	0
PZ3	1	1	1	0	0	0
SP1	1	1	0	1	0	0
SP2	1	1	0	1	0	0
SP3	1	1	0	1	0	0
SP4	1	1	0	1	0	0
PZ1	1	1	0	0	0	0
DI3	1	0	1	1	0	0
PZ2	1	0	1	0	1	0
PZ4	1	0	1	0	1	0
DI5	1	0	1	0	0	0
D14	0	1	1	1	0	0
RO1	0	0	0	0	1	1
RO2	0	0	0	0	1	1
RO3	0	0	0	0	1	1
RO4	0	0	0	0	1	1
RO5	0	0	0	0	1	1

MECHOFF - Division of products in cells

Once defined the cell (Product Families and Machine

Cell	Product	
1	DI1	
	D12	
	PZ3	
	SP1	
	SP2	
	SP3	
	SP4	
	PZ1	
	DI3	
	PZ2	***
	PZ4	***
	D15	
	DI4	
2	RO1	
	RO2	
	RO3	
	RO4	
	RO5	

*** exceptional products types), dimensioning is carried out with exactly the same approach of job-shop dimensioning, but:

- Setup time is lower in the same cell for each product family (even = 0), due to common machinery fixture : $1 / 4$ of the job shop setup time
- Smaller lots: $1 / 2$ of the job shop lots \rightarrow lower Lead Time and WIP

MECHOFF - Cell dimensioning

As in the job shop case, the formula for the required capacity is the following:

$$
N H_{i}=\sum_{j=1}^{N}\left(\frac{T_{i j} \cdot Q_{j}}{3600 \cdot\left(1-S R_{i j}\right)}+\frac{S T T_{i j}}{60} \cdot N L_{j}\right) \cdot \frac{1}{A_{i}} \cdot \frac{1}{H C_{i}} \cdot \frac{1}{T R_{i}}
$$

Where:
$>\mathrm{i}=$ index of the machine-type
$>j=$ index of the product-type
$>\mathrm{N}=$ number of different product-types
$>$ Tij $=$ unit working time [seconds/piece]
> $\mathrm{Qj}=$ quantity of product-type j that has to be produced [pieces/year]
$>$ SRij $=$ scrap rate $\quad(0 \leq$ SRij $<1)$
$>\mathrm{STTij}=$ setup time [minutes/setup]
$>\mathrm{NLj}=$ number of lots of product-type j [lots/year]
$\Rightarrow \mathrm{Ai}=$ availability $\quad(0<\mathrm{Ai} \leq 1)$
$>\mathrm{HCi}=$ human coefficient $(0<\mathrm{HCi} \leq 1)$
> $\mathrm{TRi}=$ trial rate
$(0<T R i \leq 1)$

MECHOFF - Cell dimensioning

As in the job shop case, the required capacity must be compared to the available capacity.
Each machine has the following available capacity:

$$
\mathrm{AH}_{i}(\mathbf{s})=\mathrm{WH}_{\mathrm{i}}(\mathbf{s}) \cdot \mathbf{S E}
$$

where:
$\mathrm{WH}_{\mathrm{i}}(\mathrm{s})=$ yearly working time available (depending on the number of shifts/day)
SE = scheduling efficiency $(0<S E \leq 1)$, in this case it is equal to 0.85

WH = (7.5 hours/shift * 2 shifts * 220 days/year) $=3300$ hours/year
SE $=0.85$
AH = WH * SE = 2805 hours/year

MECHOFF - Cell 1 dimensioning

	M1	
	Annual required working hours	Annual required setup hours
DI1	518	40
DI2	705	30
PZ3	207	18
SP1	2591	18,75
SP2	3264	17,5
SP3	808	7,8
SP4	1244	20
PZ1	285	15
DI3	1943	22,5
PZ2	130	4,5
PZ4	207	4,5
D15	104	7,5
D14	0	0
	Total	13390

	M2	
	Annual required working hours	Annual required setup hours
DI1	518	30
DI2	1409	20
PZ3	259	27
SP1	1554	6,25
SP2	3627	17,5
SP3	539	9,75
SP4	1658	20
PZ1	648	15
DI3	0	0
PZ2	0	0
PZ4	0	0
DI5	0	0
DI4	5181	25
	Total	17066

	M4	
	Annual required working hours	Annual required setup hours
DI1	389	40
DI2	493	60
PZ3	337	22,5
SP1	0	0
SP2	0	0
SP3	0	0
SP4	0	0
PZ1	0	0
DI3	1101	30
PZ2	104	6
PZ4	181	6,75
DI5	104	22,5
DI4	1295	25
	Total	4623

	M5 bis	
	Annual required working hours	Annual required setup hours
DI1	1295	20
DI2	3523	10
PZ3	0	0
SP1	6218	25
SP2	5803	26,25
SP3	2425	6,5
SP4	3109	20
PZ1	0	0
DI3	4534	15
PZ2	0	0
PZ4	0	0
DI5	0	0
D14	1036	6,25
	Total	30781

Number of machines = total required hours / available hours (rounded to the next integer)

$$
\begin{gathered}
\mathrm{M} 1=13390 / 2805=5 \\
\mathrm{M} 2=17066 / 2805=7 \\
\mathrm{M} 4=4623 / 2805=2 \\
\mathrm{M} \text { bis }=30781 / 2805=11
\end{gathered}
$$

MECHOFF - Cell 2 dimensioning

	M5	
	Annual required working hours	Annual required setup hours
RO1	4145	37,5
RO2	492	7,5
RO3	6601	25
RO4	544	15
RO5	6736	100
	Total	20508

	M3	
	Annual required working hours	Annual required setup hours
RO1	3316	15
RO2	155	5
RO3	6736	10
RO4	104	11
RO5	5181	50
PZ2	259	36
PZ4	648	49,5

Number of machines $=$ total required hours / available hours (rounded to the next integer)
M5 = 20508 / 2805 = 8
$M 3=18175 / 2805=7$

MECHOFF - Fixture dimensioning

The ratio behind the fixture dimensioning is the same as the cell dimensioning:
Required hours vs available hours (on each machine type)
The formulas are as usual:
and

$$
\begin{gathered}
N H_{i}=\sum_{j=1}^{N}\left(\frac{T_{i j} \cdot Q_{j}}{3600 \cdot\left(1-S R_{i j}\right)}+\frac{S T T_{i j}}{60} \cdot N L_{j}\right) \cdot \frac{1}{A_{i}} \cdot \frac{1}{H C_{i}} \cdot \frac{1}{T R_{i}} \\
\mathbf{A H}_{\mathbf{i}}(\mathbf{s})=\mathbf{W H}_{\mathbf{i}}(\mathbf{s}) \cdot \mathbf{A} \mathbf{f i x t u r e}
\end{gathered}
$$

where the parameters have the same meaning as in the machine case.
Please note that:

- $\quad A_{i}=1$, availability (of the machine) is considered 1 because fixtures are used only when machines are available while they are removed from the machines when maintenance actions are performed leading to machine unavailability;
- A_fixture is here considered as a coefficient to represent that the fixture has to be maintained; hence its availability is set at 0,98 .
Therefore:
$\mathbf{A H}=(7.5$ hours/shift * 2 shifts * 220 days/year) * 0,98 $=3234$ hours/year

MECHOFF - Fixture dimensioning for DI product family

	M1			M2	
	Annual required working hours	Annual required setup hours		Annual required working hours	Annual required setup hours
DI1	518	40	DI1	518	30
DI2	705	30	DI2	1409	20
DI3	1943	22,5	DI3	0	0
DI5	104	7,5	DI5	0	0
DI4	0	0	DI4	5181	25
	Total	3510		Total	7483

	M4	
	Annual required working hours	Annual required setup hours
DI1	389	40
DI2	493	60
DI3	1101	30
DI5	104	22,5
DI4	1295	25
	Total	3708

	M5 bis	
	Annual required working hours	Annual required setup hours
DI1	1295	20
DI2	3523	10
DI3	4534	15
DI5	0	0
DI4	1036	6,25
	Total	10875

Number of fixture $=$ total required hours / available hours (rounded to the next integer)

Number of fixtures for DI product family:

$$
\begin{gathered}
M 1=3510 / 3234=2 \\
M 2=7483 / 3234=3 \\
M 4=3708 / 3234=2 \\
\text { M5 bis }=10875 / 3234=4
\end{gathered}
$$

MECHOFF - Fixture dimensioning for PZ product family

	M1	
Annual required working hours	Annual required setup hours	
$\mathbf{P Z 3}$	207	18
$\mathbf{P Z 1}$	285	15
$\mathbf{P Z 2}$	130	4,5
$\mathbf{P Z 4}$	207	4,5
	Total	907

	M2	
	Annual required working hours	Annual required setup hours
PZ3	259	27
PZ1	648	15
PZ2	0	0
PZ4	0	0
	Total	988

	M4	
	Annual required working wours	Annual required setup hours
PZ3	337	22,5
PZ1	0	0
PZ2	104	6
PZ4	181	6,75
	Total	684

	M5 bis	
	Annual required working hours	Annual required setup hours
PZ3	0	0
PZ1	0	0
PZ2	0	0
PZ4	0	0

Number of fixture $=$ total required hours / available hours (rounded to the next integer)

Number of fixtures for PZ product family

$$
\begin{gathered}
\text { M1 }=907 / 3234=1 \\
\text { M2 }=988 / 3234=1 \\
\text { M4 }=684 / 3234=1 \\
\text { M5 bis }=0
\end{gathered}
$$

MECHOFF - Fixture dimensioning for SP product family

	M1	
Annual required working hours	Annual required setup hours	
SP1	2591	18,75
SP2	3264	17,5
SP3	808	7,8
SP4	1244	20
	Total	8303

	M2	
	Annual required working hours	Annual required setup hours
SP1	1554	6,25
SP2	3627	17,5
SP3	539	9,75
SP4	1658	20
	Total	7741

	$\mathrm{M4}$	
	Annual required working hours	Annual required setup hours
SP1	0	0
SP2	0	0
SP3	0	0
SP4	0	0
	Total	0

	M5 bis	
	Annual required working hours	Annual required setup hours
SP1	6218	25
SP2	5803	26,25
SP3	2425	6,5
SP4	3109	20
	Total	18367

Number of fixture $=$ total required hours / available hours (rounded to the next integer)

Number of fixtures for SP product family

$$
\begin{gathered}
M 1=8303 / 3234=3 \\
M 2=7741 / 3234=3 \\
M 4=0
\end{gathered}
$$

$$
\text { M5 bis }=18367 / 3234=6
$$

MECHOFF - Fixture dimensioning for RO product family

	M5	
	Annual required working hours	Annual required setup hours
R01	3316	15
RO2	155	5
R03	6736	10
RO4	104	11
R05	5181	50
	Total	16233

	M3	
	Annual required working hours	Annual required setup hours
RO1	4145	37,5
RO2	492	7,5
RO3	6601	25
RO4	544	15
RO5	6736	100
	Total	19482

Number of fixture $=$ total required hours / available hours (rounded to the next integer)

Number of fixtures for RO product family

$$
\begin{aligned}
& \text { M5 }=16233 / 3234=6 \\
& \text { M3 }=19482 / 3234=7
\end{aligned}
$$

MECHOFF - Economic Assessment - Concluding Remarks

Remarks:

1) This cost does not include the fixture costs;
2) The economic assessment on machines and labour allows to verify the cost of a STRATEGIC DECISION aimed at gaining benefits in quality and delivery performance.
