

Innovation Management and New Product Development

Technology intelligence

Agenda of today

- Short Recap
- Technology intelligence tools

Short Recap

- Technology Intelligence
- Technology intelligence tools
 - S-Curves

Short Recap

- What Technology Intelligence is
- Main Steps

Technology Intelligence Methods

- S-curve
- Patent analysis
- Publication analysis
- Scenario analysis
- Road-mapping
- Relevance trees
- Brainstorming
- Delphi method
- Skill application matrix
- Benchmarking
- Lead users analysis
- Quality function deployment
- Technical innovation audit

-

Time (or R&D effort)

Performance

S-curve

Gloria Puliga

Patent analysis

- Patents represent a highly relevant information source, even if:
 - Not all innovations are patented
 - What is patented is not always an innovation

Patent analysis

- Patent analysis can be used to:
 - Understand the positioning of a technology in its lifecycle
 - Identify and monitor major technological competitors
 - Valuate technological positioning with respect to competitors
 - Compare the patent strategy against competitors
 - Communicate the innovation activity

https://poldham.github.io/Patent-Databases/

Publication analysis

- Use of databases of scientific and technical publications to verify:
 - The frequency of occurrence of papers on a specific technology
 - The citations of such papers
 - Indication of quality
 - Indication of correlations among different science technology areas

Scenario analysis

- Scenario analysis describes «realistic» future states and the different possible patterns towards those future states
- It is based upon:
 - Identification of variables that influence the future state of a system
 - Identification of the trend of the above variables
 - Elaboration of possible future scenarios, corresponding to different patterns of the above variables
- May exploit system dynamics theory

Scenario analysis

- Advantages:
 - Allows to explicitly consider uncertainty
 - Greatly supports strategic decision making
 - May be used with technological roadmaps
- Limits:
 - Expensive (time and resources)
 - Difficult to consider possible tehcnological discontinuities and breakthrough (i.e. the emerging of new relevant influence variables)

Technology roadmapping

- Technology roadmaps:
 - are tools for strategic forecasting and planning
 - Integrate different organizational perspectives in the intelligence process: R&D, di marketing, manufacturing, finance
 - May evolve following actual events

Technology roadmapping

Adattata da: Lichtenthaler, 2002

14

Technology roadmapping

- Advantages:
 - Visual, clear and rapid representation
 - Integrates different data and information from different company's functional units
 - Integrates technological, scientific, organizational, marketing, manufacturing elements
- Limits:
 - Hard to consider technology breakthrough
 - Soft, non-technical information are often missed

Relevance trees

- Aimed at understanding the alternative paths for achieving a specific objective
- Starting form the desired objective, it is de-composed in different levels(for example, clean car):
 - (i) alternative solutions (electric cars, hybrid cars etc...)
 - (ii) functions (lithium cells, photovoltaic cells, etc...)
 - (iii) technological solutions for performing desired functions
 - (iv)
- Each level should be analysed in terms of feasibility, necessary resources, success probability, timing
- Relevance trees allow to:
 - (i) evaluate the feasibility of a path
 - (ii) identify the optimal path
 - (iii) select and plan projects
 - (iv) define performance goals for each R&D project
 - (v) identify the need for specific forecasting activities, relevant for defining possible paths

Brainstorming

- Expert judgment, critical when:
 - There are no historical data
 - New variables are emerging that influence the evolution of technology
 - Cause-effect relations cannot be understood
 - The focus is on the identification of Technological discontinuities

Brainstorming

- Team definition: need to introduce external competencies as well (even external people)
- Identification of the team coordinator, who stimulates the creative process and avoid not useful parenthesis
- Definition of the focus of the discussion
- Exploration of all possible ideas and opinions with the same commitment
- Exploration of ideas, not solutions
- Inhibition removal

Delphi study

- It is a sort of «structured» brainstorming, allowing to:
 - Reduce or remove psychological influences
 - Consider ideas coming from minority groups
 - Cleanse the expert judgement from subjective, personal, biased factors
- Characteristics:
 - Anonymous: avoids the influence of leaders (either hierarchical of charismatic)
 - Iteration with controlled feedback: judgements and forecasts are elaborated and filtered from the coordinator
 - Synthetic synthesis of answers: make expert judgement less subjective

Delphi method

- The technological focus of the process is identified and the coordinator (or moderator) elaborates the questionnaire
- A panel of experts is defined, each expert does not know others
- The questionnaire is sent to the experts

The sequence is launched

- 1. Experts answer to the questionnaire; the coordinator pool answers and defines the list of events / relevant items
- 2. Experts valuate the timing of relevant events / items and the coordinator statistically elaborates the answers (distributions, means, variances, medians...)
- 3. Statistic results are communicate to the experts, asking to motivate their positioning with respect to the mean and median values; experts may then change their answer
- 4. Iteration of point 3;
- Iterations end when there is a statistically robust convergence of answers and when subsequent iterations do not introduce significant statistic modifications

Delphi method

- Advantages
 - Precision
 - Reliability (higher with a high number of expert)
- Disadvantages
 - The identification of experts is critical
 - The identification of a neutral, unbiased coordinaotr is critical
 - May foster orthodoxy
 - Expert commitment in answering to the questionnaire cannot be verified

applications

existing

			A1	A2	A3	A4	A5	A6
IIVC -	existing	T1						
		T2						
		Т3						
	new	Т4						

Competence – application matrix an example

COMPETENCIES APPLICATIONS A4 A1 A2 **A3 C1** Х Х Х **C2** Х **C3** Х Х **C4 C5** Х Х **C6** Х Х **C7** Х **C8 C9** Х **C10** Х **C11** Х C12 **C13** Х **C14** Х C15 Х

Università Cattaneo

Competence – application matrix an example

Università Cattaneo

	COMPETENCIES	APPLICATIONS							
		A1	A2	A3	A4				
	C1	Х	Х	Х					
	C2			Х					
	C3	Х							
	C4	Х							
	C5		Х	Х					
	C6		Х		Х				
<	C7								
	C8				Х				
	C9				Х				
	C10				Х				
	C11				Х				
<	C12								
	C13				Х				
	C14	Х							
	C15				Х				

Competence – application matrix an example

COMPETENCIES APPLICATIONS A1 A2 **A3** A4 **C1** Х Х Х **C2** Х **C3** Х **C4** Х **C5** Х Х **C6** Х Х **C7 C8** Х **C9** Х **C10** Х **C11** Х C12 **C13** Х **C14** Х C15 Х

Università Cattaneo

Benchmarking:

- Comparison against technology "best in class"
- Phases:
 - Planning:
 - Defining the process / performance investigated
 - Identifying "best in class"
 - Defining the data collection process
 - Analysing:
 - Measuring current performance
 - "cleaning" data
 - Draw conclusions:
 - Positioning against "best in class"

Technology intelligence

- The choice of the intelligence method should take into consideration:
 - Information needs and the type of use expected for results
 - Time, resources, competences available
 - Familiarity with the methods
 - Time horizon
 - Uncertainty
 - Strategic relevance of the TI process