Innovazione e sviluppo prodotto & ovation Management & New Produ

Innovation Management & New Product Development

New Product Development: New concept generation and the use of TRIZ

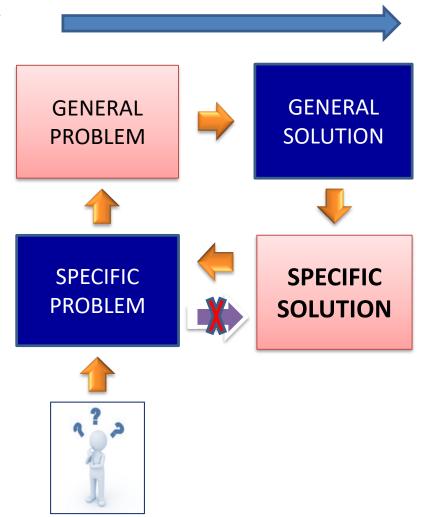
Implementing TRIZ a proposed framework

UNDERSTAND THE «HEARTH» OF THE PROBLEM

• PHYSICAL / TECHNICAL CONTRADICTIONS

PROBLEM ABSTRACTION (building a model)

•SU-FIELD ANALYSIS


HOW «MATURE» IS MY SYSTEM?

- Distance from IFR
- ITEMS

HOW DOES MY SYSTEM WORK?

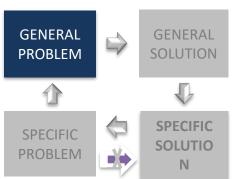
- Describe your system/ products in the most objective way as possible ("film maker")
- Describe functions, value proposition, tangible and intangible features (product specifrications)

FINDING A SOLUTION

- FUNCTIONAL ANALYSIS
- 40 PRINCIPLES
- SEPARATION PRINCIPLE

APPLYING THE SOLUTION TO THE SPECIFIC PROBLEM

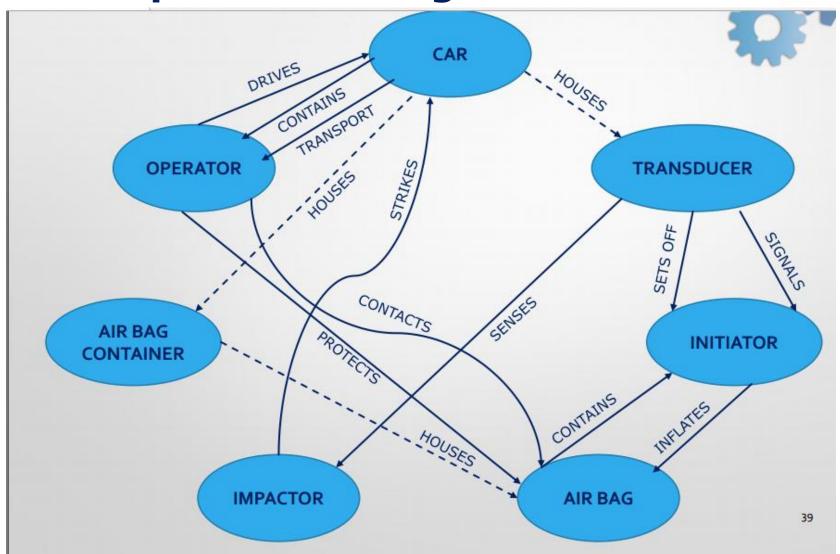
- PATENT ANALYSIS
- Understanding evolutionary trends



PROBLEM ABSTRACTION (building a model)
•SU-FIELD ANALYSIS

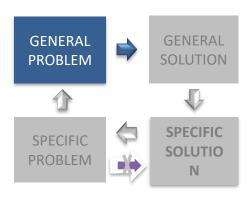
UNDERSTAND THE «HEARTH»
OF THE PROBLEM

• PHYSICAL / TECHNICAL CONTRADDICTIONS


Applying su-field analysis

- Identify the elements of a system.
- Identify The fields.
- Construct the model.
- After completing these steps, stop to evaluate the completeness and effectiveness of the system. Bring into evidence if some element is missing, some effect is harmful, or not necessary, try to identify what it is.

Su-field analysis example: the airbag



Undesired effects, inefficient effects are often generated by CONTRADICTIONS (conflicts in a system); they represent the general problem

Contradictions

- Physical contradictions: a same object might be in mutually exclusive physical states (to perform the necessary function, the object should posses / should not possess some properties)
- Technical contradictions: a same object might possess contrasting technical parameters

Technical parameters

ALTSHULLER'S PARAMETERS

1.	Weight of moving object
2.	Weight of stationary object
3.	Length of moving object
4.	Length of stationary object
5.	Area of moving object
6.	Area of stationary object
7.	Volume of moving object
8.	Volume of stationary object
9.	Speed
10.	Force
11.	Tension, pressure
12.	Shape
13.	Stability of object
14.	Strength
15.	Durability of moving object
16.	Durability of stationary object
17.	Temperature
18.	Brightness
19.	Energy spent by moving object
20.	Energy spent by stationary

object

21.	Power
22.	Waste o

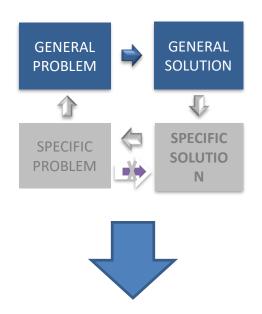
- 22. Waste of energy
- 23. Waste of substance
- 24. Loss of information
- 25. Waste of time
- 26. Amount of substance
- Reliability
- 28. Measurement accuracy
- 29. Manufacturing accuracy
- Harmful factors acting on an object
- 31. Harmful side effects
- 32. Manufacturability
- 33. Convenience of use
- Repairability
- 35. Adaptability
- 36. Device complexity
- 37. Complexity of control
- 38. Level of automation
- 39. Productivity

Technical contradictions are in a 39 X 39

contradiction matrix

Rows = feature to improve

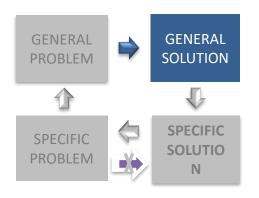
Columns = undesired results


Each cell represents a contradiction.

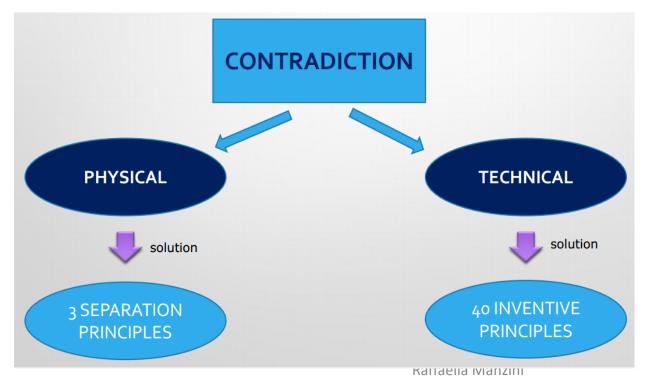
APPENDIX 2 — Contradiction Matrix

/	Undesired	1	2	3	4	5	6	7	8	9	10
Result (Conflict) Feature to Improve		Weight of moving object	Weight of stationary object	Length of moving object	Length of stationary object	Area of moving object	Area of stationary object	Volume of moving object	Volume of stationary object	Speed	Force
1	Weight of moving object			15, 8, 29, 34		29, 17, 38, 34		29, 2, 40, 28		2, 8, 15, 38	8, 10, 18, 37
2	Weight of stationary object				10, 1, 29, 35		35, 30, 13, 2		5, 35, 14, 2		8, 10, 19, 35
3	Length of moving object	8, 15, 29, 34				15, 17, 4		7, 17, 4, 35		13, 4, 8	17, 10 4
4	Length of stationary object		35, 28, 40, 29				17, 7, 10, 40		35, 8, 2, 14		28, 10
5	Area of moving object	2, 17 29, 4		14, 15, 18, 4				7, 14, 17, 4		29, 30, 4, 34	19, 30 35, 2
6	Area of stationary object		30, 2, 14, 18		26, 7, 9, 39						1, 18 35, 36
7	Volume of moving object	2, 26, 29, 40		1, 7, 4, 35		1, 7, 4, 17				29, 4, 38, 34	15, 35 36, 37
8	Volume of stationary object		35, 10, 19, 14		35, 8, 2, 14						2, 18 37
9	Speed	2, 28, 13, 38		13, 14, 8		29, 30, 34		7, 29, 34			13, 28 15, 19
10	Force	8, 1, 37 18		17, 19, 6 36	28, 10	19, 10, 15	1, 18, 36, 37	15, 9, 12, 37		13, 28, 15, 12	

From the general problem to the general solution



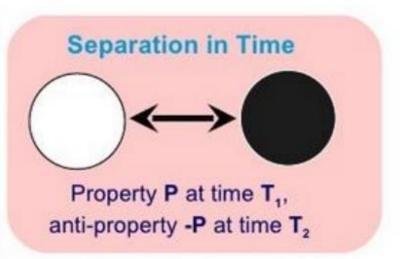
Solving contradictions means moving towards a general solution for the general problem


General solution

FINDING A SOLUTION

- SEPARATION PRINCIPLES
- 40 PRINCIPLES

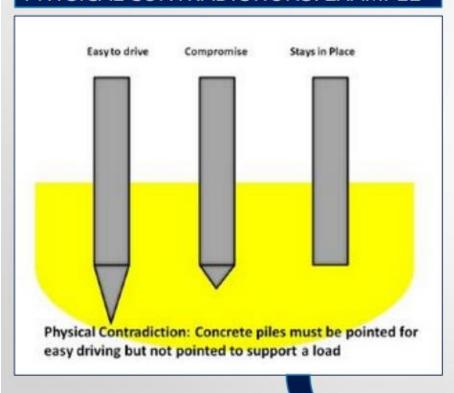
11

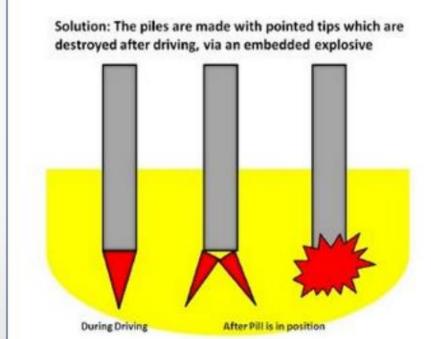

The separation principles to be used in order to solve physical contradictions are:

- Separation in space
- Separation in time
- Separation between the parts and the whole
- Separation upon conditions

Separation principles

One part has property P, another part has anti-property -P


Separation between the Whole and its Parts


No		No						
No		No	No			No		
No		No	No			No		
No	No	No	No	No	No	No	No	No
		No	No					No
No	No.		No					No
NO	NO		No	No	No	No	No	No

Object has property **P**, Its components have property **-P**

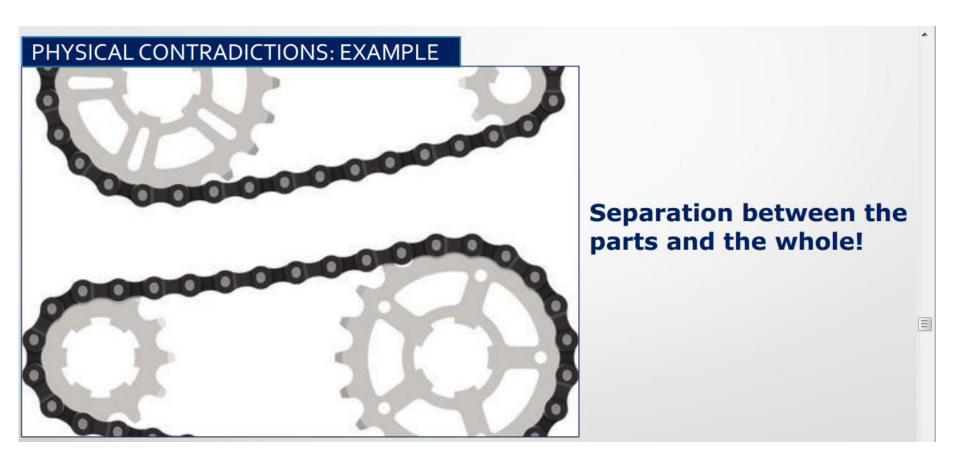
PHYSICAL CONTRADICTIONS: EXAMPLE

Separation in...TIME!

PHYSICAL CONTRADICTIONS: EXAMPLE

Physical Contradiction

Car should have a large space to accommodate people and should not have large space to get parked easily



Solution

Flexible space depending on requirements

Separation in...SPACE!

40 principles

Each cell represents a contradiction;

Contradictions can be solved by applying the **40 inventive principles**;

the contradiction matrix specifies the principles to be used for each cell, that is for each contradiction

APPENDIX 2 — Contradiction Matrix

/	Undesired	1	2	3	4	5	6	7	8	9	10
Result (Conflict) Feature to Improve		Weight of moving object	Weight of stationary object	Length of moving object	Length of stationary object	Area of moving object	Area of stationary object	Volume of moving object	Volume of stationary object	Speed	Force
1	Weight of moving object			15, 8, 29, 34		29, 17, 38, 34		29, 2, 40, 28		2, 8, 15, 38	8, 10, 18, 37
2	Weight of stationary object				10, 1, 29, 35		35, 30, 13, 2		5, 35, 14, 2		8, 10, 19, 35
3	Length of moving object	8, 15, 29, 34				15, 17, 4	143	7, 17, 4, 35		13, 4, 8	17, 10 4
4	Length of stationary object		35, 28, 40, 29				17, 7, 10, 40		35, 8, 2, 14		28, 10
5	Area of moving object	2, 17 29, 4		14, 15, 18, 4				7, 14, 17, 4		29, 30, 4, 34	19, 30 35, 2
6	Area of stationary object		30, 2, 14, 18		26, 7, 9, 39						1, 18, 35, 36
7	Volume of moving object	2, 26, 29, 40		1, 7, 4, 35		1, 7, 4, 17				29, 4, 38, 34	15, 35 36, 37
8	Volume of stationary object		35, 10, 19, 14		35, 8, 2, 14						2, 18 37
9	Speed	2, 28, 13, 38		13, 14, 8		29, 30, 34		7, 29, 34			13, 28 15, 19
10	Force	-		17, 19, 6 36	28, 10	19, 10, 15	1, 18, 36, 37	15, 9, 12, 37	2, 36, 18. 37	13, 28, 15, 12	

The 40 inventive principles

- The 40 inventive principles represent general solutions drawn from previous inventions
- They represent the principles already used by inventors in their innovation process

Example:

1. Segmentation

- Divide an object into independent parts
- Make an object easy to disassemble
- Increase the degree of an object segmentation

Link for the 40 inventive principles

- www.triz40.com/TRIZ GB.php
- https://triz-journal.com/40-inventive-principles-examples/