

Factory Layout Planning (FLP)

FLP consists in the definition of the physical organization of the factory

- FLP concerns the search of the most efficient location of the shops (i.e. areas of activities) within a given building or area available in a building
- Shops might have needs of space very different one from the other
- The objective is the minimization of costs of «relation» between the shops, respecting plant constraints (facility physical structural constraints, building constraints, floor maximum load allowed, service infrastructures)

Results of FLP: CAD drawing of the factory layout

Factory Layout Planning (FLP)

General layout, with identification of location of each shop.

The drawing of the detailed layout in which the following elements are identified: exact position of the shops, structure of corridors/passages, exit and entry points, position of machine and workstations within the shops

Objectives of the FLP problem

One of the traditional objective is to optimize the efficiency of material flows and the relation between productive areas (and non-productive areas).

The FLP problem is multi-objective!

Objective Function:

$$\min \alpha \cdot \sum_{i} \sum_{j} (f_{ij} \cdot c_{ij}) \cdot d_{ij} - (1 - \alpha) \cdot \sum_{i} \sum_{j} r_{ij} \cdot x_{ij}$$

- f_{i,i} = material flow between two areas/shops i,j
- c_{i,j} = cost per unit of movements between two areas/shops i,j
- d_{i,i} = distance between two areas/shops i,j

Models for FLP analysis

Formulate the problem as objective functions with given constraints (linear programming models).

Objective function

$$\min \sum_{i} \sum_{j} (f_{ij} \cdot c_{ij}) \cdot d_{ij}$$

- Rectilinear distance
- Euclidean distance
- Actual distance

Models for FLP analysis

Formulate the problem as objective functions with given constraints (linear programming models)

Constraints (Example)

$I_i \le x_i \le L - I_i$	∀i
$w_i \le y_i \le W$ - w_i	∀i
$lb_i \le 2l_i \le ub_i$	∀i
$lb_i \le 2w_i \le ub_i$	∀i

•••

. . .

- x_i , y_i = coordinate of barycentre of the shop i
- L, W = geometric dimensions of the building
- I_i and w_i = geometric dimensions of shop i
- ub_i and lb_i = max geometric dimension of shop i (orientation of the shop)

FLP Methodology: phases of the project

Systematic Layout Planning Methodology (Richard Muther)

Product analysis

 ABC analysis on products supports strategic definition of factory layout
 ⇒ layout product oriented vs. layout process oriented

Material flow analysis

■ The flow diagram allows to identify the requirements for movement between shops ⇒ from technology diagram (of families of) of products to origin/destination matrix of flows

Product and material flow analysis

Example for high volumes products

Graph and space diagram

Graph method

Space diagram method

Graph and space diagram

Factory layout drawing

Example of CAD factory layout with identification of shops with high density of flows

Tip: shops with high density of flows should be put one close to the other

FLP Methodology: Relationship analysis

The method of "Relationship Chart" identifies the requirements of relation between shops (i.e. areas of activity) (between shop i and shop j) \Rightarrow causes and importance of relations are identified by dedicated codes

Flow analysis vs Relationship analysis

Methods and criteria for FLP planning

Heuristic techniques for the solution search

- Search of a «good» solution
- Automation of the search vs. interactive search

Heuristic

- In computer science, artificial intelligence, and mathematical optimization, a heuristic is a technique designed for solving a problem more quickly when classic methods are too slow, or for finding an approximate solution when classic methods fail to find any exact solution. This is achieved by trading optimality, completeness, accuracy, or precision for speed. In a way, it can be considered a shortcut.
- The objective of a heuristic is to produce a solution in a reasonable time frame that is good enough for solving the problem at hand. This solution may not be the best of all the actual solutions to this problem, or it may simply approximate the exact solution. But it is still valuable because finding it does not require a prohibitively long time.
- Heuristics may produce results by themselves, or they may be used in conjunction with optimization algorithms to improve their efficiency (e.g., they may be used to generate good seed values).

(Wikipedia definition)

Methods and criteria for FLP planning

Heuristic MAT (Modular Allocation Technique) – starting from green field

Objective function $\min \alpha \cdot \sum_{i} \sum_{j} (f_{ij} \cdot c_{ij}) \cdot d_{ij} - (1 - \alpha) \cdot \sum_{i} \sum_{j} r_{ij} \cdot x_{ij}$

Input data

Weight of relations between shops

WH finished	POS.1	POS.3
WH raw	POS.2	POS.4

	Origin/Destination matrix					
8 2	WH raw material	R1	R2	R3	R4	WH finished product
WH raw		275				
Shop - R1			225		50	
R2	f			200		25
R3	lij					200
R4						50
WH finished	1					

Methods and criteria for FLP planning Heuristic MAT

- Order couple of positions with growing distance
- Order couple of shops with decreasing flow

Flow order (MAT) **WH** raw **R1** 275 225 **R1 R2 R2 R3** 200 **R3** WH finished 200 **R4 R1** 50 WH finished 50 **R4** 25 **R2** WH finished

Methods and criteria for FLP planning Heuristic MAT

Flow order (MAT)			
WH raw	R1	275	
R1	R2	225	
R2	R3	200	
R3	WH finished	200	
R1	R4	50	
R4	WH finished	50	
R2	WH finished	25	

Design criteria

 Shops with larger exchanged flow should be positioned one beside the other (to minimize operative costs)

Methods and criteria for FLP planning

Reflect on a different method and perspective (different from the heuristic MAT)

Computerized Layout Technique

- Suppose that we are given some space for some shops (i.e. areas of activities). How shall we arrange the shops within the given space?
- We shall assume that the given space is rectangular shaped and every shop is either rectangular shaped or composed of rectangular pieces.
- We shall discuss:
 - a layout improvement procedure, CRAFT, that attempts to find a better layout by pair-wise interchanges when a layout is given and
 - a layout construction procedure, ALDEP, that constructs a layout when there is no layout given.

Computer-assisted layout using CAD

Computer-assisted layout using CAD

Computer-assisted layout using CAD

🖉 MtL07_12 - Blocco note	
File Modifica Formato ?	
Provention Name: Tagli_MIP_01 Creation date of the calculation log: 18/05/2004 Creation time of the calculation log: 9.30.07	***************************************
All calculations are done for the time unit: ************************************	 YEAR เหน่นหน่นหน่นหน่นหน่นหน่นหน่นหน่นหน่นหน่
Product: P001 Production Volume:	480000
Seq. #:1 From: Magazzino MP [Storage] To: St MH Device Name: MH Device Speed:	ampa [Process] Carrello elettrico [Lift truck] 150,00 [m/min]
Total Travel Time (adjusted for effectiveness): Travel Time (adjusted for effectiveness): Point-to-Point Distance: Distance (adjusted for effectiveness):	341,80 [min] 0,28 [min] 21,36 [m] 42,73 [m]
Container: Standa	ard Pallet [Pallet Full]
Load/Unload time: [per trip, delivery, container, Load Time: Load Template: Fork Load [Using material k 1.Load Activity [Per trip] 1,0	part] 2.640,00 [min] 1.200,00 [min] nandling device default.] 0 * 1.200,00 = 1.200.00 [min]
Unload Time: Unload Template: Fork Unload [Using materi 1.Unload Activity [Per trip] 1,2	1.440,00 [min] ial handling device default] 20 * 1.200,00 = 1.440,00 [min]
Frequency: Parts Moved: Parts per Container: Containers per Trip:	1.200,00 [trips] 4.800.000,00 [parts] 4.000,00 [parts] 1,00 [containers]
Total Time:	2.981,80 [min]
Total Cost: Fixed Cost: Variable Cost:	878,73 [∟.] 88,55 [∟.] 790,18 [∟.]
Seq. #:2 From: Stampa [Process] To: Ma MH Device Name: MH Device Speed:	agazzino PF [Storage] Carrello elettrico [Lift truck] 150,00 [m/min]
Total Travel Time (adjusted for effectiveness): Travel Time (adjusted for effectiveness): Point-to-Point Distance:	860,26 [min] 0,60 [min] 44,80 [m]
📖 😹 Start 🗍 🧶 🖏 🚮 🗍 📶 AutoCAD 2002 - VERS 🔁 Flow	EDS FactoryFLOW - T C→ EDS FactoryFLOW - T C→ MtL07_12 - Blocco C→ EDS FactoryFLOW - T

