Design of Manufacturing Systems - Manufacturing Cells

Outline

- General features
- Examples
- Strengths and weaknesses
- Group technology - steps
- System design
- Virtual cellular manufacturing

Manufacturing cells - general features

When cellular manufacturing is applied, parts are grouped into part families and machines into cells.

The machines are grouped on the basis of the processing requirements of the part families (different technological processes / machines in the same cell).

${ }^{(*)}$ Product and part are terms used as synonymous during this course

Manufacturing cells - general features

Each product has its own routing within the cell (this is the case when no inter-cell move is required $>$ case of complete cell independence).

Example 1

Example 2

Part families associated to the FMS (Flexible Manufacturing System)

Example 3

Some examples

■ https://www.youtube.com/watch?v=E54HAZWQpys

■ https://www.youtube.com/watch?v=c50 IAlfzsk

Manufacturing cells - general features

When cellular manufacturing is applied, it may lead to:

- re-arrange existent equipment on the factory floor (i.e. machines, ...);
- operate with new equipment, often incorporating various forms of flexible automation (i.e. from machines, material handling equipment, ..., to FMC/FMS).

In other words, a typical question related to system design is required - "which machines and their associated parts should be grouped together to form cells?' - before rearranging existent equipment on the factory floor, or incorporating flexible automation.

Manufacturing cells - Strengths

- Rationalization of material flows
- Setup time reduction
- Production management is easier

Overall (compared to the job-shop):
\square WIP reduction
\square Lead time reduction (also considering variability)
\square More reliable estimates of delivery lead times

Manufacturing cells - Strengths

■ Job enlargement + job enrichment for employees

- Team work within the cell
- Unification of product and process responsibilities
- More control on the quality characteristics of the products

Manufacturing cells - Weaknesses

- Difficulties with work load balancing between cells
- Problems related to production mix variability
- Difficulties with the application to the whole stages of the production chain
- In some cases, necessity of more machines than in a job shop
- Difficulties to manage technological operations outside the cells
- Problems related to breakdowns

Group technology - Steps

- Data collection regarding the production mix and technological routings
- Classification of products
- Standardization of products
- Standardization of technological routings
- Identification of product families
- Identification of machine groups forming the cells

Rough design of a manufacturing cell

After the identification of product families and machine groups, the cells design can be based on the same approach used for the job-shop:

- calculate the number of machines of type i necessary in the cell;
- evaluate the number of shifts/day, computing the yearly costs adopting 1,2 or 3 shifts/day.

Group technology - Methods

- Identification of product families based on the classification of products
> Informal methods
> Based on geometrical features
> Based on technological features
> Part coding analysis methods
> Based on geometrical features
> Based on technological features

Based on the classification of products

- Based on geometrical features of products

Based on the classification of products

- Based on technological features of products

Based on the classification of products \square Part coding analysis (example 1)

Part code

Based on the classification of products

- Part coding analysis (example 2)

Group technology - Methods

- Identification of product families / machine groups forming the cells simultaneously based on PFA (Production Flow Analysis)
> Cluster analysis
> ROC (Rank Order Clustering)
> Similarity coefficients
> Graph partitioning
> Mathematical programming

Based on PFA - Rank Order Clustering

\square Step 1: read each row as a binary number

- Step 2: order rows according to descending binary numbers
- Step 3: read each column as a binary number
- Step 4: order columns according to descending binary numbers
- Step 5: if on steps 2 and 4 no reordering happened go to step 6, otherwise go to step 1
- Step 6: stop

Rank Order Clustering - Example (1/3)

Machine/part matrix
$\Rightarrow \quad \begin{aligned} & a_{i j}=1 \text { if part } j \text { visits machine } i \\ & a_{i j}=0 \text { otherwise }\end{aligned}$

MACHINE	PRODUCTS							Decimal		
TYPE	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	number	
\mathbf{A}		$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{2 0 0}$
\mathbf{B}	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1 7}$	
C	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1 0 2}$	
\mathbf{D}	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1 7}$	
\mathbf{E}	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{5 4}$	
\mathbf{F}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{2 0 0}$	

(binary number) $1 \times 2^{7}+1 \times 2^{6}+0 \times 2^{5}+0 \times 2^{4}+1 \times 2^{3}+0 \times 2^{2}+0 \times 2^{1}+0 \times 2^{0}=200$

Rank Order Clustering - Example (2/3)

| MACHINE | PRODUCTS | | | | | | | Decimal | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TYPE | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | number |
| A | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | 200 |
| F | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | 200 |
| C | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1 0 2}$ |
| E | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | 54 |
| B | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1 7}$ |
| D | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1 7}$ |
| Decimal n. | $\mathbf{4 8}$ | $\mathbf{5 6}$ | $\mathbf{1 2}$ | $\mathbf{7}$ | $\mathbf{4 8}$ | $\mathbf{1 2}$ | $\mathbf{1 2}$ | $\mathbf{3}$ | |

Rank Order Clustering - Example (3/3)

MACHINETYPE	PRODUCTS								Decimal number
	2	1	5	3	6	7	4	8	
A	1	1	1	0	0	0	0	0	224
F	1	1	1	0	0	0	0	0	224
C	1	0	0	1	1	1	0	0	156
E	0	0	0	1	1	1	1	0	30
B	0	0	0	0	0	0	1	1	3
D	0	0	0	0	0	0	1	1	3
Decimal n .	56	48	48	12	12	12.	7	3	
								Cell formation$\square$$\square$potential cells	

Based on PFA - Similarity coefficients

- Step 1: compute the similarity coefficients

Where $\mathrm{n}_{\mathrm{ij}}=$ number of parts worked by both the machines.
$n_{i}=$ number of parts worked by machine i
$n_{j}=$ number of parts worked by machine j

$$
\mathbf{s}_{\mathbf{i j}}=\max \left(\frac{\mathbf{n}_{\mathbf{i j}}}{\mathbf{n}_{\mathbf{i}}} ; \frac{\mathbf{n}_{\mathbf{i j}}}{\mathbf{n}_{\mathbf{j}}}\right)
$$

- Step 2: join the couple (i^{*}, j^{*}) with the highest similarity coefficient, thus forming the machine group k
- Step 3: remove rows and columns related to both i^{*} and j^{*} from the original similarity matrix and substitute them with the row and column of the machine group k; then, compute the similarity coefficient

$$
s_{r k}=\max \left(s_{\mathrm{ri}^{*}}, s_{\mathrm{r}^{\mathrm{j}^{*}}}\right)
$$

- Step 4: go to step 2 (based on a criterion: single machine group, or predetermined number of machine groups)

Similarity coefficients - Example (1/7)

Machine/part matrix $\Rightarrow \quad \begin{aligned} & a_{i j}=1 \text { if part } j \text { visits machine } i \\ & a_{i j}=0 \text { otherwise }\end{aligned}$

MACHINETYPE	PRODUCTS								
	1	2	3	4	5	6	7	8	
A	1	1			1				i
B				1				1	
C	1	1	1			1	1		j
D	-			1				1	
E	,		1	1		1	1		
F	1	1			1				

Similarity coefficients - Example (2/7)

Similarity matrix $\quad \Rightarrow \mathrm{s}_{\mathrm{ij}}=$ similarity coefficients

MACHINE	MACHINE TYPE					
TYPE	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}
\mathbf{A}	-	$\mathbf{0}$	$\mathbf{0 . 3 3}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
\mathbf{B}	$\mathbf{0}$	-	0	$\mathbf{1}$	$\mathbf{0 . 5}$	$\mathbf{0}$
\mathbf{C}	$\mathbf{0 . 3 3}$	$\mathbf{0}$	-	$\mathbf{0}$	$\mathbf{0 . 7 5}$	$\mathbf{0 . 3 3}$
\mathbf{D}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	-	$\mathbf{0 . 5}$	$\mathbf{0}$
\mathbf{E}	$\mathbf{0}$	$\mathbf{0 . 5}$	$\mathbf{0 . 7 5}$	$\mathbf{0 . 5}$	-	$\mathbf{0}$
\mathbf{F}	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0 . 3 3}$	$\mathbf{0}$	$\mathbf{0}$	-

Similarity coefficients - Example (3/7)
Machine/part matrix $\Rightarrow \begin{aligned} & a_{i j}=1 \text { if part } \mathrm{j} \text { visits machine } \mathrm{i} \\ & \mathrm{a}_{\mathrm{ij}}=0 \text { otherwise }\end{aligned}$

MACHINE	PRODUCTS							
TYPE	1	2	3	4	5	6	7	8
A	1	(1)			1		i*	
B				1				1
C	1	(1)	1			1	1	r
D	1			1				1
E	,		1	1		1	1	
F	1	(1)		1	1		+*	
$\mathrm{s}_{\text {rit* }}=\max \left(\frac{1}{4} ; \frac{1}{3}\right)=$		$\mathrm{s}_{\mathrm{rjz}}=$	max	$\begin{gathered} \downarrow \\ ; \frac{1}{3} \end{gathered}=$		$\mathrm{s}_{\text {rk }}$		

Similarity coefficients - Example (4/7)

CELL	CELL				
	$\mathbf{A , F}$	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
\mathbf{A}, \mathbf{F}	-	0	0.33	$\mathbf{0}$	$\mathbf{0}$
\mathbf{B}	$\mathbf{0}$	-	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0 . 5}$
\mathbf{C}	$\mathbf{0 . 3 3}$	$\mathbf{0}$	-	$\mathbf{0}$	$\mathbf{0 . 7 5}$
\mathbf{D}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	-	$\mathbf{0 . 5}$
\mathbf{E}	$\mathbf{0}$	$\mathbf{0 . 5}$	$\mathbf{0 . 7 5}$	$\mathbf{0 . 5}$	-

Similarity coefficients - Example (5/7)

CELL	CELL			
	\mathbf{A}, \mathbf{F}	\mathbf{B}, \mathbf{D}	\mathbf{C}	E
A, F	-	0	0.33	0
B, D	$\mathbf{0}$	-	$\mathbf{0}$	$\mathbf{0 . 5}$
C	$\mathbf{0 . 3 3}$	$\mathbf{0}$	-	$\mathbf{0 . 7 5}$
E	$\mathbf{0}$	$\mathbf{0 . 5}$	$\mathbf{0 . 7 5}$	-

Similarity coefficients - Example (6/7)

CELL	CELL		
	$\mathbf{A , F}$	$\mathbf{B ,}, \mathbf{D}$	\mathbf{C}, \mathbf{E}
\mathbf{A}, \mathbf{F}	-	$\mathbf{0}$	$\mathbf{0 . 3 3}$
\mathbf{B}, \mathbf{D}	$\mathbf{0}$	-	0.5
\mathbf{C}, \mathbf{E}	0.33	0.5	-

Similarity coefficients - Example (7/7)

The dendrogram is a tree used to show the hierarchy of similarities among all the couples of machines (machine groups).

Similarity coefficients - Example (7/7)

Dendrogram

1.0
0.75
0.5
0.33

Machine/part matrix

	Product type							
Machine Type	1	2	5	4	8	3	6	7
A	1	1	1					
F	1	1	1					
B				1	1			
D				1	1			
C		1				1	1	1
E				1		1	1	1

Cells are formed after defining the minimum similarity coefficients amongst the couples of machines (machine groups)

Cell formation
$\square 3$ potential cells
Exceptional parts
$\square 2$ exceptional parts

