Design of Manufacturing Systems – Manufacturing Cells

Outline

- General features
- Examples
- Strengths and weaknesses
- Group technology steps
- System design
- Virtual cellular manufacturing

Manufacturing cells – general features

When cellular manufacturing is applied, parts are grouped into **part families** and machines into **cells**.

The machines are grouped on the basis of the **processing requirements** of the part families (different technological processes / machines in the same cell).

^(*) Product and part are terms used as synonymous during this course

Manufacturing cells – general features

Each product has its own **routing** within the cell (this is the case <u>when</u> <u>no inter-cell move</u> is required > case of complete cell independence).

Example 1

Example 2

Example 3

Some examples

https://www.youtube.com/watch?v=E54HAZWQpys

https://www.youtube.com/watch?v=c50_IAlfzsk

Manufacturing cells – general features

When cellular manufacturing is applied, it may lead to:

- re-arrange existent equipment on the factory floor (i.e. machines, ...);
- operate with new equipment, often incorporating various forms of flexible automation (i.e. from machines, material handling equipment, ..., to FMC/FMS).

In other words, a typical question related to system design is required – "*which machines and their associated parts should be grouped together to form cells?*" – before rearranging existent equipment on the factory floor, or incorporating flexible automation.

Manufacturing cells – Strengths

- Rationalization of material flows
- Setup time reduction
- Production management is easier

Overall (compared to the job-shop):

□ WIP reduction

□ Lead time reduction (also considering variability)

□ More reliable estimates of delivery lead times

Manufacturing cells – Strengths

- Job enlargement + job enrichment for employees
- Team work within the cell
- Unification of product and process responsibilities
- More control on the quality characteristics of the products

Manufacturing cells – Weaknesses

- Difficulties with work load balancing between cells
- Problems related to production mix variability
- Difficulties with the application to the whole stages of the production chain
- In some cases, necessity of more machines than in a job shop
- Difficulties to manage technological operations outside the cells
- Problems related to breakdowns

Group technology – Steps

- Data collection regarding the production mix and technological routings
- Classification of products
- Standardization of products
- Standardization of technological routings
- Identification of product families
- Identification of machine groups forming the cells

Rough design of a manufacturing cell

After the identification of product families and machine groups, the cells design can be based on the same approach used for the job-shop:

- calculate the number of machines of type i necessary in the cell;
- evaluate the number of shifts/day, computing the yearly costs adopting 1, 2 or 3 shifts/day.

Group technology – Methods

- Identification of product families based on the classification of products
 - Informal methods
 - > Based on geometrical features
 - Based on technological features
 - Part coding analysis methods
 - Based on geometrical features
 - Based on technological features

Based on the classification of products

□ Based on geometrical features of products

Based on the classification of products

Based on technological features of products

Based on the classification of products Part coding analysis (example 1)

■ Part coding analysis (example 2)

19

Group technology – Methods

- Identification of product families / machine groups forming the cells simultaneously based on PFA (Production Flow Analysis)
 - Cluster analysis
 - > ROC (Rank Order Clustering)
 - Similarity coefficients
 - Graph partitioning
 - Mathematical programming

Based on PFA – Rank Order Clustering

- □ Step 1: read each row as a binary number
- □ Step 2: order rows according to descending binary numbers
- □ Step 3: read each column as a binary number
- Step 4: order columns according to descending binary numbers
- Step 5: if on steps 2 and 4 no reordering happened go to step 6, otherwise go to step 1
- □ Step 6: stop

Rank Order Clustering – Example (1/3)

Machine/part matrix

 $a_{ij} = 1$ if part j visits machine i $a_{ij} = 0$ otherwise

MACHINE		PRODUCTS							Decimal
TYPE	1	2	3	4	5	6	7	8	number
A	1	1	0	0	1	0	0	0	200
B	0	0	0	1	0	0	0	1	17
С	0	1	1	0	0	1	1	0	102
D	0	0	0	1	0	0	0	1	17
E	0	0	1	1	0	1	1	0	54
F	1	1	0	0	1	0	0	0	200

(binary number) $1 \ge 2^7 + 1 \ge 2^6 + 0 \ge 2^5 + 0 \ge 2^4 + 1 \ge 2^3 + 0 \ge 2^2 + 0 \ge 2^1 + 0 \ge 2^0 = 200$

Rank Order Clustering – Example (2/3)

MACHINE			Decimal						
TYPE	1	2	3	4	5	6	7	8	number
Α	1	1	0	0	1	0	0	0	200
F	1	1	0	0	1	0	0	0	200
С	0	1	1	0	0	1	1	0	102
E	0	0	1	1	0	1	1	0	54
В	0	0	0	1	0	0	0	1	17
D	0	0	0	1	0	0	0	1	17
Decimal n.	48	56	12	7	48	12	12	3	

(binary number) 1 x 2^5 + 1 x 2^4 + 1 x 2^3 + 0 x 2^2 + 0 x 2^1 + 0 x 2^0 = 56

Rank Order Clustering – Example (3/3)

MACHINE				Decimal					
TYPE	2	1	5	3	6	7	4	8	number
Α	1	1	1	0	0	0	0	0	224
F	1	1	1	0	0	0	0	0	224
С		0	0	1	1	1	0	0	156
E	0	0	0	1	1	1	(1)	0	30
B	0	0	0	0	0	0	1	1	3
D	0	0	0	0	0	0	1	1	3
Decimal n.	56	48	48	12	12	12	7	3	
	Exce	ption	al part		Cell formation				
	□ dı □ al	uplica ternat	ell mov tion of tive ro eration	3	potential cells				

Based on PFA – Similarity coefficients

□ Step 1: compute the similarity coefficients

Where n_{ii}=number of parts worked by both the machines.

- n_i = number of parts worked by machine i
- n_i = number of parts worked by machine j

chines.
$$\mathbf{s_{ij}} = \max\left(\frac{\mathbf{n_{ij}}}{\mathbf{n_i}}; \frac{\mathbf{n_{ij}}}{\mathbf{n_j}}\right)$$

- Step 2: join the couple (i*, j*) with the highest similarity coefficient, thus forming the machine group k
- Step 3: remove rows and columns related to both i* and j* from the original similarity matrix and substitute them with the row and column of the machine group k; then, compute the similarity coefficient

$$\mathbf{s}_{rk} = \max(\mathbf{s}_{ri^*}, \mathbf{s}_{rj^*})$$

Step 4: go to step 2 (based on a criterion: single machine group, or predetermined number of machine groups)

Similarity coefficients – Example (1/7)

Machine/part matrix 🔿

 $a_{ij} = 1$ if part j visits machine i $a_{ij} = 0$ otherwise

Similarity coefficients – Example (2/7)

Similarity matrix

MACHINE	MACHINE TYPE							
TYPE	Α	B	C	D	E	F		
Α	-	0	0.33	0	0	1		
B	0	-	0	1	0.5	0		
С	0.33	0	_	0	0.75	0.33		
D	0	1	0	-	0.5	0		
E	0	0.5	0.75	0.5	-	0		
F	1	0	0.33	0	0	-		

Similarity coefficients – Example (3/7) Machine/part matrix $\Rightarrow a_{ij} = 1$ if part j visits machine i $a_{ij} = 0$ otherwise

Similarity coefficients – Example (4/7)

CELL	CELL							
	A, F	B	С	D	E			
A, F	-	0	0.33	0	0			
В	0	-	0	1	0.5			
С	0.33	0	-	0	0.75			
D	0	1	0	-	0.5			
Ε	0	0.5	0.75	0.5				

Similarity coefficients – Example (5/7)

CELL	CELL							
	A, F	E						
A , F	-	0	0.33	0				
B, D	0	-	0	0.5				
С	0.33	0	-	0.75				
Ε	0	0.5	0.75	-				

Similarity coefficients – Example (6/7)

CELL	CELL						
	A, F	C, E					
A , F	-	0	0.33				
B, D	0	-	0.5				
C, E	0.33	0.5	-				

Similarity coefficients – Example (7/7)

The dendrogram is a tree used to show the hierarchy of similarities among all the couples of machines (machine groups).

