Flexible manufacturing systems

Components of a FMS

Computer Numerical Control

- Computer Numerical Control (CNC) means that a local computer directly controls machine functioning.
- Numerical control allows the transmission of information to the machine tool, and thus all the subsequent actions implemented by the machine itself.
- Numerical control means exploiting information technology and electronics in order to improve machine tools performances and flexibility

Computer Numerical Control

- Compared to traditional machines, CNC machines require totally different manpower operations.
- First CNC machines were built in the mid-'50s but their large-scale diffusion started in the '70s.
- The very first CNC machine was built in 1947 in USA for the aeronautic industry, in order to meet the need to provide complex surfaces in reasonable times.

Technological evolution

Traditional Machine

- Considerable passive times (air cutting and machine stoppage)
- Higher error possibility
- Productivity also depends on operator skills

CNC Machine

- Strongly reduced passive times, also related to machine equipment
- Error possibility only during the programming phase
- Production results do not depend on operator skills
- Productivity strongly depends on the technological level of the machine

Human-machine interface

Traditional Machine

- Design analysis
- Mnemonic activities to identify operations sequences
- Parts fixing
- Tools fixing
- Working parameters settings
- Operations execution

CNC Machine

- Off-line computer programming
- Transferring of the program to the machine
- Parts fixing
- Tools loading
- Operations starting
- Operations supervision

Opportunities and Problems

Opportunities

- □ High automation
- High flexibility
- Passive time reduction
- Productivity increase
- Quality improvement
- Waste reduction
- Manpower reduction
- Versatility increase

Problems

- High costs related to:
 - Acquisition investment
 - Maintenance
 - Assistance
 - Programming of processing cycles

CNC machines characteristics

- One engine for each controlled axis (synchronized and simultaneous movements)
- Moving elements provided with transductors that continuously recognize axis positions
- High installed power
- High speed of positioning movements

- Mechanisms to quickly change tools
- Tools to hold and move pallets, for the rapid replacement of finished products with WIP products
- Conveyors facilitating the gathering and disposal of shavings
- Sliding barriers delimiting working areas in order to ensure operators security

MM: spindle engine TRN: transductor angular speed MZ: engine Z axis TRSDZ: transductor Z axis MX: engine X axis TRASDX: transductor X axis

Machining centre

- It is a machine with multiple scope of work, highly flexible where it is possible to make a high number of operations (drilling, milling,)
- Main technical characteristics:
 - Operating field (workable volume)
 - Orientation of the rotational axis of the spindle (p.e.: horizontal)
 - Number of controlled axes
 - Max rotational speed of the spindle
 - Max translation speed of the axes (passive move)
 - Installed power / avaiilable power

3,4 and 5-axis machining centers

Warehouse for tools

- Tools required for producing a part and/or a set of parts need to be located in a warehouse for tools dedicated to the machine tool before the start of the machining phase
- Before their positioning, tools undergo a off-line presetting (they are dimensioned considering a fixed point of reference). Presetting-data need to be memorized within the governing units so that ensuring the correct execution of the machining.
- Warehouse for tools can hold up to hundreds tools simultaneously

Wareohouse for tools of a machine

Automatic change of the tool

Wareohouse for tools of the system

System for changing tools with AGV

Systems for changing parts

- Changing the part should be as quick as possible so that avoiding wasting time during the machining phase.
- In order to hold and handle parts (or pallets) a table is exploited, its movements are allowed by an automatic system.
- Different CNC centers can be linked with each others and presuppose the presence of systems moving pallets from one center to another

Pallet exchangers: rotating with two compartments

- T, holding-pallet table
- F, pallet with finished product
- P, pallet with the part to be processed
- S, system for pallet exchange

Rotating table

Pallet carousel

Mobile head

Commuting table

Shuttle

System buffers and interoperational buffers

Roller conveyor

Rail transport

Automated Guided Vehicle (AGV)

Guiding system of an AGV (1)

Guiding system of an AGV (2)

Guiding system of an AGV (3)

Speed profile of an AGV

Dimension check

Multi-headed tester

Gantry system for the dimension check

Automated Storage/Retrieval System - ASRS - (Ingersol-Rand)

Automated Storage/Retrieval System - ASRS - (Caterpillar)

Focus on CNC machines

Programming elements

- The part program provides all information required to execute the machining phases:
 - Regarding the tool trajectory from the part, both related to the geometry and to the moving modes (of advancement, cutting, positioning, ...)
 - Regarding the chosen technological parameters (speed, advancement, ...)
 - □ Regarding other auxiliary information, such as:
 - Tool selection
 - Use of cutting fluids
 - Load/unload of pallets
 - ...

2

Ē

Т 101 М 6 — — — — — — — — — — — — — — — — — —	Chiamata utensile 1
G 96 S 100 M4 F2	Impostazione parametri di taglio
G 0 X Z 1	Avvicinamento rapido
G 1 Z	
X 30	
Z - 60	Tornitura profilo
X 100 Z - 100	-
Z - 120	
G 0 X 150 Z 150	Allontanamento rapido
T 202 M 6	Chiamata utensile 2
G 97 S 300 M 4 F.08 M 08	Impostazioni parametri di taglio
	e apertura refrigerante
G 0 X 31 Z - 20	Avvicinamento rapido
G 1 X 20	Esecuzione gola
G 0 X 31	Allontanamento rapido
Z 150 M 09	e stop refrigerante
M 30	Stop programma e reset

An easy program in the language of CNC machines

Machining

- The machining program is loaded in the memory of the governing unit
- The machining program is selected at the moment the parts need to be processed
- Before starting each machining phase, the «zero machine» has to be identified, it is the reference for all handling instructions
- A setup programming cycle (complete or partial) has to be executed in order to verify the presence of any programming error
- Parts have to be positioned
- The program is launched

CAM systems – Computer Aided Manufacturing

CAD systems can be integrated with the related CAM package. They allow to create, starting from the design, the part program. The part program provides all paths of tools to be given directly to the CNC machine to execute machining operations

Numerical Control: conclusions

- The two fundamental and characterizing parameters of a production system are (they are in a trade-off relationship):
 - Productivity: the capacity to process a high quantity of parts in a given time, given defined levels of quality and cost
 - Flexibility: the capacity to quickly adapt to process an high number of parts that have different and changeable characteristics
- CNC machines optimally provide both the aforementioned characteristics, indeed they ensure:
 - Reduced execution times (productivity)
 - Minimal passive times (flexibility)

Numerical Control: conclusions

- It is particularly advantageous for the machining of:
 - □ Parts with complex shape
 - □ Parts requiring an high number of tools
 - □ Continuous control of the cutting speed
 - □ Exploitation of not highly skilled operators
- Further applications of CNC (in addition to the shaving removal) can be:
 - Robots
 - □ Measuring machines
 - □ Centers for the machining of sheet metal
 - □ Centraper la lavorazione della lamiera
 - □ Laser cutting systems, *water jet*, flat parts systems
- The set of CNC machines constitute a FMS Flexible Manufacturing System, based on the electronic link of single units with a central PC, which manages the allocation of processing activities required on the different machines

Rossum universal robots (K. Capek), 1920

In this theatrical drama, for the first time the term robota = forced or heavy labor was used

Robotics laws (I. Asimov), 1942

A robot may not injure a human being or, through inaction, allow a human being to come to harm

A robot must obey any orders given to it by human beings, except where such orders will conflict with the First Law

A robot must protect ist own existence as long as such protection does not conflict with the First or Second Law

Main typologies of robots

ABB

Cartesian

Anthropomorphic

The hand can execute gripper functions or end effector functions

Standard hand

Hand with high opening

The hand can execute gripper functions or end effector functions

Hand with aligned fingers

Self-centering hand

The hand can execute gripper functions or end effector functions

Hand with cams

Hand with cams with internal and external jaws

The hand can execute gripper functions or end effector functions

Hand for parts with different sizes

Special hand for glass tubes

The hand can execute gripper functions or end effector functions

Flashlight for arc welding

Hand with ladle

The hand can execute gripper functions or end effector functions

Gun for points welding

Pneumatic iron

FMS – Conceptual schema and examples

LOGIC SYSTEM OF A FMS

MAX MAKINO SYSTEM

SHORT-TERM PROGRAMMING ACTIVITY

PLANNED TEMPORAL HORIZONT

Architecture of the management system

SCAMP system

SCAMP system

AN EXAMPLE OF MANUFACTURING CELL

Badger Meter CELL

Badger Meter CELL

FANUC FMS

