Productivity measures

Productivity $=\frac{\text { Production volume (expressed in a certain unit of measurement) }}{\text { Level of use of a certain production factor }}$

Material
Productivity

Machine productivity

Workforce productivity

Productivity measures

Productivity measurements are, generally, expressed by indicators of efficiency such as:
$P=$ Output / Input

These can be measured with reference to:

- a single machine,
- a group of machines,
- stages of the production process or
- the entire production system (see later "Hamlet's question")

Productivity

- Partial measures*: output / single input
- Output/energy, output/machine hour, output/labor
- Multi-factor measures: output / multi input
- Multi-factor: output/(energy + machine cost), output/(labor + capital)
- Total measure : output / all inputs
- In general, Productivity = output / input

Productivity measures

To make a diagnosis is, generally, not so useful to aggregate the productivity measures.

More useful indications derive from the decomposition of productivity measurements (P) in:

- Utilisation (U) and
- Efficiency (η)
of productive factors.
The output of the process is always the good (compliant) production that is stocked measured against "standard hours" (i.e. the hours that according to standard are necessary to produce a specific object, including the setup time).

The input changes according to the productive factors considered (machine, material or workforce)

Productivity measures

- Workforce Utilisation

$$
\mathrm{U}=\frac{\text { ACTUAL PRODUCTION TIME }}{\text { PAID HOURS }}
$$

$$
\mathrm{U}=\frac{\mathrm{T}-\mathrm{TMo}-\mathrm{TMm}-\mathrm{TSc}-\mathrm{TO}-\mathrm{TG}-\mathrm{TM}-\mathrm{TPr}}{\mathrm{~T}}
$$

$$
\mathrm{U}=\frac{\mathrm{TPb}+\mathrm{TPs}+\mathrm{TS}}{\mathrm{~T}}
$$

Productivity measures

- Machine Utilisation

$$
\mathrm{U}=\frac{\text { ACTUAL PRODUCTION TIME }}{\text { OPENING CALENDAR TIME }}
$$

$$
\mathrm{U}=\frac{\mathrm{T}-\mathrm{TMo}-\mathrm{TMm}-\mathrm{TSc}-\mathrm{TO}-\mathrm{TG}-\mathrm{TM}-\mathrm{TPr}}{\mathrm{~T}}
$$

$$
\mathrm{U}=\frac{\mathrm{TPb}+\mathrm{TPs}+\mathrm{TS}}{\mathrm{~T}}
$$

Productivity measures

- Efficiency

$\eta=\quad$ Actual Production in std. hours ACTUAL PRODUCTION TIME

$$
\eta=\frac{\text { STD H. "STOCKED" }}{\text { ACTUAL PRODUCTION TIME }}
$$

$$
\eta=\frac{\sum\left[\left(\overline{\mathrm{TP}}_{\mathrm{i}}+\overline{\mathrm{TP}}_{\mathrm{s}}\right)+\overline{\mathrm{TS}}\right]}{\sum\left[\left(\mathrm{TPb}_{\mathrm{i}}+\mathrm{TPs}_{\mathrm{s}}\right)+\mathrm{TS}\right]}
$$

The concept of standard time is fundamental.

Productivity measures

Factor	PRODUCTIVITY	UTILISATION	EFFICIENCY
WF	$\frac{\text { produced volume }}{\text { paid hours }}$	$\frac{\text { actual worked } \mathrm{h} .}{\frac{\text { vol.in h. std. }}{\text { paid h. }}}$	actual worked h.
MAC	$\frac{\text { produced volume }}{\text { installed cap. }}$	$\frac{\text { act.prod h. }}{\text { opening h. }}$	$\frac{\text { vol.in h.std. }}{\text { actual prod.h. }}$
MAT*	$\frac{\text { produced volume }}{\text { mater. used }}$	$\frac{\text { theor. consum. }}{\text { actual consum. }}$	$\frac{\text { vol. in material }}{\text { theor. consum. }}$

PRODUCTIVITY = UTILISATION \times EFFICIENCY

Utilisation
exercise

T = 750 h	
TPb1 (eff) = 260 h	TPb2 (eff) = 407 h
TPs1 (eff) = 8 h	TPs2 (eff) = 3 h
TG = 12 h	TPr = 7 h
TM = 9 h	TS (eff) = 21 h
TMm = 4 h	TMo = 14 h
TO = 5 h	TSc = 0 h

Efficiency

exercise

QB1 $=200.000$ pcs	QB2 $=240.000$ pcs
QS1 $=4.800$ pcs	QS2 $=1.200$ pcs
RS1 $=800$ pcs/h	RS2 $=600$ pcs/h
TPb1 (eff) $=260 \mathrm{~h}$	TPb2 (eff) $=407 \mathrm{~h}$
TPs1 (eff) $=8 \mathrm{~h}$	TPs2 (eff) $=3 \mathrm{~h}$
TS (eff) $=21 \mathrm{~h}$	TS (std) $=20 \mathrm{~h}$

$R S=$ standard production rate (pcs/h)

Efficiency

QB1 $=200.000$ pcs	QB2 $=240.000$ pcs
QS1 $=4.800 \mathrm{pcs}$	QS2 $=1.200 \mathrm{pcs}$
RS1 $=800 \mathrm{pcs} / \mathrm{h}$	RS2 $=600 \mathrm{pcs} / \mathrm{h}$
TPb1 $=250 \mathrm{~h}$	TPb2 $=400 \mathrm{~h}$
TPs1 $=6 \mathrm{~h}$	TPs2 $=\mathbf{2} \mathrm{h}$
TS (std) $=20 \mathrm{~h}$	

