Innovazione e sviluppo prodotto & Innovation Management & New Product Development

New Product Development: New concept generation and the use of TRIZ

Raffaella Manzini, Valentina Lazzarotti, Gloria Puliga

Techniques for supporting new concept generation

- Quality function deployment
- Lead users analysis
- Benchmarking
- Brainstorming
- Lateral thinking
- Serendipity
-
-

• TRIZ: theory of inventive problem solving

TRIZ: theory of inventive problem solving

теория решения изобретательских задач

- A theory developed by Genrich Altshuller in Russia in the late '40s, based upon the following assumptions:
 - Inventors use patterns without awarness to develop new technology;
 - Technology evolution is a systematic process;
 - Innovation can be organised in a systematic way;
 - 98% of inventions use already known solution principles

TRIZ INVENTION MODEL: GENERAL FRAMEWORK

The problem of invention: psychological inertia

THINK TO A BALL...

The problem of invention: psychological inertia

The problem of invention: psychological inertia

WHICH ARE THE MINIMUM DIMENSIONS OF A PIZZA CARTON?

Invention vs. optimisation

EXAMPLE: COMPACT PRINTER

AS-IS solution

Optimization

Invention \rightarrow it is a <u>change in</u> <u>the perspective</u>: I am not working on technical parameters but on something completely new. I have to think «out of the box» \rightarrow TRIZ

11

Optimization → works on technical parameters Every qualified engineer might solve the technical problem

Implementing TRIZ a proposed framework

Specific Problem

HOW «MATURE» IS MY SYSTEM?

- Distance from IFR
- ITEMS

HOW DOES MY SYSTEM WORK?

- Describe your system/ products in the most objective way as possible ("film maker")
- Describe functions, value proposition, tangible and intangible features (product specifrications)

Film Maker

- The film maker aims to describe the main phases of the life of a product
- Provide general information about the system, describing them using the active form
- Describe the actual structure
- Description of how the system work, by detailing the phases of the life of the product ad the environment in which it acts
- Interactions of the product with other systems, close systems, "higher system" and environment
- Identification of the available resources (substances, fields, functional resources, information, time and space)

Product Needs

No.		Need	Imp.
1	The suspension	reduces vibration to the hands.	3
2	The suspension	allows easy traversal of slow, difficult terrain.	2
3	The suspension	enables high-speed descents on bumpy trails.	5
4	The suspension	allows sensitivity adjustment.	3
5	The suspension	preserves the steering characteristics of the bike.	4
6	The suspension	remains rigid during hard cornering.	4
7	The suspension	is lightweight.	4
8	The suspension	provides stiff mounting points for the brakes.	2
9	The suspension	fits a wide variety of bikes, wheels, and tires.	5
10	The suspension	is easy to install.	1
11	The suspension	works with fenders.	1
12	The suspension	instills pride.	5
13	The suspension	is affordable for an amateur enthusiast.	5
14	The suspension	is not contaminated by water.	5
15	The suspension	is not contaminated by grunge.	5
16	The suspension	can be easily accessed for maintenance.	3
17	The suspension	allows easy replacement of worn parts.	1
18	The suspension	can be maintained with readily available tools.	3
19	The suspension	lasts a long time.	5
20	The suspension	is safe in a crash.	5

Product needs and specifications

	Product Needs	Technical Specifications
The Trolley (Case)	should have a low weight	Weight of the case below 2 kg
The Trolley (Case)	should be waterproof	Build with a waterproof material
The Trolley (Case)	should be as small (in terms of volume) as needed	The dimensions should be x*y*z

The Ideal Final Result (IFR)

- The way towards the Ideal Final Result (IFR) requires reduction (ideally, elimination) of ITEMS:
 - I → INFORMATION
 - T → TIME
 - E → ENERGY
 - M \rightarrow MATERIAL
 - S → SPACE

Ideality

Defining Ideality breaks psychological inertia

Ideality: example

Ideality: example

The Ideal Final Result (IFR)

- The way towards the Ideal Final Result (IFR) requires reduction (ideally, elimination) of ITEMS:
 - I → INFORMATION
 - T → TIME
 - E → ENERGY
 - M \rightarrow MATERIAL
 - S → SPACE

Problem generalisation

PROBLEM ABSTRACTION(building a model)SU-FIELD ANALYSIS

UNDERSTAND THE «HEARTH» OF THE PROBLEM

• PHYSICAL / TECHNICAL CONTRADDICTIONS

Su-field analysis

The minimum SF model includes:

- an "article" (S₁) representing an object that is changed or influenced in some way
- a tool (S₂) representing the means by which S₁ is changed or influenced
- energy (F) representing the interaction between S₁ and S₂

- A vacuum cleaner cleaning a carpet
 - S₁ carpet (article)
 - S₂ vacuum cleaner (tool)
 - F cleaning (mechanical field)

Su-field analysis - language

Fields can be: Me - mechanical Th - thermal Ch - chemical E - electrical M - magnetic

Applying su-field analysis

- Identify the elements of a system.
- Identify The fields.
- Construct the model.
- After completing these steps, stop to evaluate the completeness and effectiveness of the system. Bring into evidence if some element is missing, some effect is harmful, or not necessary, try to identify what it is.

Su-field analysis example: the airbag

From the general problem to the general solution

Undesired effects, inefficient effects are often generated by CONTRADICTIONS (conflicts in a system); they represent the general problem

Solving contradictions means moving towards a general solution for the general problem

Università Cattaneo