The picture shows the different phases to produce a component call C . This component is obtained by equally mixing the component A and B.

The C component is critical for the next processes, for this reason must be produced without stops.
There are not intermediate storages between the different phases $\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~B} 1, \mathrm{C} 1, \mathrm{C} 2$.
Between the considered line and the next processes there is a storage where the component C is stored. This storage allows that the productivity of the considered line can be 90\%

In the following table there are all the characteristics of the machine in each phases.

Phases	Availability	Production Capacity [kg/h]	Scrapped coeff.	Cost machine [Keuro]	Operating cost [keuro/h]	Operators
A1	0.95	150	0.07	50	0.02	4
A2	0.9	70	0.1	70	0.015	3
B	0.95	140	0.05	800	0.04	5
C1	0.9	260	0.08	150	0.008	6
C2	0.9	160	0.1	300	0.005	5

Considering that the production capacity of next process is $200 \mathrm{~kg} / \mathrm{h}$, sizing the considered line in order to have an availability of 90% and a minimum cost.

Raw material [euro/kg] A	3
Raw material [euro/kg] B	4,5
Plant cost [euro/h]	20
Night shift	20%
Public holidays shift	40%

The opening time is 350 day per year

