Outline

Case study 1 "Mechoff"

Design of manufacturing systems – Job Shop

- Introduction
- Input data
- Top management's questions

MECHOFF - Top Management's questions

➤ Is it possible to meet demand without buying any new machines (just varying the **number of shifts**)?

- > Or is it necessary to buy **new machines** (**how many**)?
- > **Space** is not a constraint because an eventual new expansion of the manufacturing plant was taken into account in the design of layout.

MECHOFF – Draft solution

Objective

To find the best alternative which allows the company to process all products of family SP in house at the lowest costs.

Assumptions:

- ✓ The production cycle of family SP includes 3 operations: milling (M1), drilling (M2) and face grinding (M5).
- ✓ Drilling capacity is considered to be available (no further investigation is needed)

MECHOFF – Draft solution

Procedure

The following steps can be followed to find the best solution:

- 1. Evaluating the **required capacity** to satisfy the demand in M1 and M5.
- Verifying the available capacity in both M1 and M5 departments with the current configuration and, hence, the amount of missing capacity.
- 3. Identifying **potential alternatives** to provide the missing capacity:
 - ✓ using overtime
 - ✓ adding one shift
 - ✓ buying new machines
 - ✓ a mix of the above mentioned alternatives.

MECHOFF – 1. Required capacity

It can be evaluated with the following formula (please make sure that all time elements are expressed with the same unit of measure)

$$NH_{i} = \sum_{j=1}^{N} \left(\frac{T_{ij} \cdot Q_{j}}{3600 \cdot (1 - SR_{ij})} + \frac{STT_{ij}}{60} \cdot NL_{j} \right) \cdot \frac{1}{A_{i}} \cdot \frac{1}{HC_{i}} \cdot \frac{1}{TR_{i}}$$

Where:

- \rightarrow i = index of the machine-type
- \rightarrow j = index of the product-type
- > N= number of different product-types
- > Tij = unit working time [seconds/piece]
- > Qj = quantity of product-type j that has to be produced [pieces/year]
- > SRij = scrap rate $(0 \le SRij < 1)$
- STTij = setup time [minutes/setup]
- NLj = number of lots of product-type j [lots/year]
- ightharpoonup Ai = availability (0 < Ai \leq 1)
- \rightarrow HCi = human coefficient (0 < HCi \leq 1)
- ightharpoonup TRi = trial rate (0 < TRi \leq 1)

MECHOFF – Required capacity – Deptm M1

ltem	Yearly demand (units/year)	Working time (hours/unit)	Required hours (hrs/y)) TLij * Qj	N. of lots per year	Setup time (hours/setup)	Setup hours (hrs/y) TPMij * NIj
PZ1	500	0.55	275	10	3	30
PZ2	500	0.25	125	12	1.5	18
PZ3	500	0.4	200	200 18 2		36
PZ4	500	0.4	200	9	2	18
DI1	2500	0.2	500	40	2	80
DI2	3400	0.2	680	40	1.5	60
DI3	6250	0.3	1875	30	1.5	45
DI4	5000	0	0	25	1	
DI5	500	0.2	100	15	1	15
R01	8000	0	0	30	1	
RO2	500	0	0	5	1	
RO3	6500	0	0	20	1	
RO4	500	0	0	10	1	
RO5	10000	0	0	50	1	
SP1	5000	0.5	2500	25	1.5	37.5
SP2	7000	0.45	3150	35	1	35
SP3	2600	0.3	780	13	1.2	15.6
SP4 (new item!)	2000	0.6	1200	20	2	40
		total	11585		total	430
		scrap rate	11585/0,96 =			

MECHOFF – Required capacity – Deptm M5

ltem	Annual demand (units/year)	Working time (hours/unit)	Required hours (hours/year) TLij * Qj	N. of lots per year	Setup time (hours/setup)	Setup hours (hours/year) TPMij * NIj
PZ1	500	0	0	10	I	
PZ2	500	0	0	12	1	
PZ3	500	0	0	18	1	
PZ4	500	0	0	9	1	
DI1	2500	0.5	1250	40	1	40
DI2	3400	1	3400	40	0.5	20
DI3	6250	0.7	4375	30	1	30
DI4	5000	0.2	1000	25	0.5	12.5
DI5	500	0	0	15	1	1
R01	8000	0.5	4000	30	2.5	75
RO2	500	0.95	475	5	3	15
RO3	6500	0.98	6370	20	2.5	50
RO4	500	1.05	525	10	3	30
RO5	10000	0.65	6500	50	4	200
SP1	5000	1.2	6000	25	2	50
SP2	7000	0.8	5600	35	1.5	52.5
SP3	2600	0.9	2340	13	1	13
SP4 (new item!)	2000	1.5	3000	20	2	40
		total	44835		total	628
			44835/0,96 = 46703			

MECHOFF – Required capacity

Department M1

$$NH_{M1} = \sum_{j=1...J} \{TLij * Qj/(1-SRj) + TPMij * NIj \} * 1/Ai * 1/HCi * 1/TRi = (12068 + 430) * 1/0.95 * 1/0.94 * 1 = 13996 hours/year$$

Department M5

$$NH_{M5} = \sum_{j=1...J} \{TLij * Qj/(1-SRj) + TPMij * NIj \} * 1/Ai * 1/HCi * 1/TRi = (46703 + 628) * 1/0.95 * 1/0.94 * 1 = 53002 hours/year$$

MECHOFF – 2. Available vs. missing capacity

$$AH_i(s) = WH_i(s) \cdot SE$$

where:

WH_i(s) =yearly working time available (depending on the number of shifts/day) SE = scheduling efficiency (0 < SE \leq 1), in this case it is equal to 0.8

AH_{M1} = 2 machines * (7.5 hours/shift * 2 shifts * 220 days/year) * 0.8 = **5280 hours/year**

Missing capacity in M1 = 13996 - 5280 = 8716 hours/year

AH_{M5} = 12 machines * (7.5 hours/shift * 2 shifts * 220 days/year) * 0.8 = **31680 hours/year**

Missing capacity in M5: 53002 - 31680 = 21322 hours/year

MECHOFF - 3. Evaluation of alternatives

Assumptions about the number of operators/machines:

- ✓ in the current configuration there are 29 machines
- √ 30 operators working on two shifts
- therefore, it is possible to assume that 15 operators work on the shop floor each shift
- > on average, one operator supervises 2 machines.

MECHOFF – 3a Overtime only

Assumptions:

- ✓ Overtime can be used for not more than 2 hours/day during the week
- ✓ Overtime can be applied on 8 hours basis on Saturday.

Therefore, max overtime (OT) for one machine in one year is:

OT = 2 hours/day * 220 days/year + (220/5) Saturday/year * 8 hours/Saturday = 792 hours/year

OT _{M1} = 2 machines * 792 hours/year * 0.8 = **1267 hours/year**

OT _{M5} = 12 machines * 792 hours/year * 0.8 = **7603 hours/year**

Conclusion: the use of overtime is not enough to meet the demand of missing capacity. Therefore, overtime can be used only in combination with other alternatives.

MECHOFF – 3b Adding 3rd shift

Assumptions:

✓ Number of machines stays the same

Adding the **third shift** the following capacity (hours) is available:

```
AH<sub>M1</sub> = 2 machines * (7.5 hours/shift* 220 days/year) * 0.8 = 2640 hours/year
```

Note: in case of **third shift**, it is possible to use overtime only on Saturday:

OT
$$_{M1}$$
 = 2 machines * (220/5) Sat./year * 8 hours/Sat. * 0.8 = **563** hrs/y OT $_{M5}$ = 12 machines * (220/5) Sat./year * 8 hours/Sat. * 0.8 = **3379** hrs/y

Conclusion: the addition of the third shift is not sufficient to satisfy the entire demand.

MECHOFF – 3c Adding 3rd shift + new mach.

Assumptions:

- ✓ Missing hours **M1** = 8716 hrs/y
- \checkmark AH_{M1} (third shift) = 2640 hrs/y
- ✓ Additional capacity which is needed (\triangle) = 6076 hrs/y
- ➤ Additional capacity/machine = 7.5 hours/ shifts * 3 shifts/day * 220 days/year * 0.8 = 3960 hours/year
- \rightarrow The number of **new machines** is = 6076/3960 = 1.53

Conclusion: two new machines are needed.

The average **level of saturation** in the **M1** department would be:
Required hours/Available hours = 13996/((2+2 machines) * 3960)) = **0.88**

MECHOFF – 3c Adding 3rd shift + new mach.

Assumptions:

- ✓ Missing hours **M5** = 21322 hrs/y
- \checkmark AH_{M5} (third shift) = 15840 hrs/y
- ✓ Additional capacity which is needed (\triangle) = 5482 hrs/y
- ➤ Additional capacity/machine = 7.5 hours/ shifts * 3 shifts/day * 220 days/year * 0.8 = 3960 hours/year
- \rightarrow The number of **new machines** is = 5482/3960 = 1.38

Conclusion: two new machines are needed.

The average **level of saturation** in the **M5** department would be: Required hours/Available hours = 53002/((12+2 machines) * 3960) = **0.95**

MECHOFF – 3c Economic assessment

Assumptions M1:

- ✓ Total cost = investment cost M1+ operator cost M1
- ✓ In the new configuration there are 4 machines and 2 operators/shift are needed at M1
- ✓ Assuming that nr 1 operator per shift already works at M1, 2 new operators for the third shift and 2 operators for the other 2 shifts (or 1 operator/shift) have to be hired.

Therefore:

```
➤ Investment cost M1 = 2 * (150000 *0.05) = 15000
Euro/year
```

days/year

days/year

MECHOFF – 3c Economic assessment

Assumptions M5:

- ✓ **Total cost** = investment cost M5+ operator cost M5
- ✓ In the new configuration there are 14 machines and 7 operators/shift are needed.
- ✓ Assuming 6 operators per shift already works in the department M5, 2 new operators (or 1 operator/shift) for the first 2 shifts and 7 for the third shift have to be hired.

Therefore:

```
    Investment cost M5
    Labour cost M5
    = 2 * (250000 *0.05) = 25000 Euro/year
    = 1 * 13.5 €/hour * 7.5 hours/shift * 220 days/year
    + 1 * 14.5 €/hour * 7.5 hours/shift * 220 days/year
    + 7 * 15.5 €/hour * 7.5 hours/shift * 220 days/year
    = 2 * (250000 *0.05) = 25000 Euro/year
    + 1 * 14.5 €/hour * 7.5 hours/shift * 220 days/year
    + 2 * (250000 *0.05) = 25000 Euro/year
    + 1 * 14.5 €/hour * 7.5 hours/shift * 220 days/year
    + 2 * (250000 *0.05) = 25000 Euro/year
    + 1 * 15.5 €/hour * 7.5 hours/shift * 220 days/year
    + 2 * (250000 *0.05) = 25000 Euro/year
```

Total cost M1+M5 = 15000 + 97350 + 25000 + 225225 = 362575 €/year

MECHOFF – 3d Adding new machines (2 shifts)

Assumptions:

- ✓ Missing hours M1 = 8716 hrs/y
- ➤ Additional capacity/machine = 7.5 hours/shifts * 2 shifts/day * 220 days/year * 0.8 = 2640 hours/year
- \rightarrow The number of **new machines** is = 8716/2640 = **3.3** i.e. nr **4**

- \rightarrow Missing hours **M5** = 21322 hrs/y
- Additional capacity/machine = 7.5 hours/shifts * 2 shifts/day * 220 days/year * 0.8 = 2640 hours/year
- \rightarrow The number of **new machines** is = 21322/2640 = **8.1** i.e. nr **9**

MECHOFF – 3d Economic assessment

Assumptions:

- ✓ Total cost = investment cost M1+ operator cost M1+ investment cost M5 + operator cost M5
- ✓ **Operators M1**: 6 machines and 3 operators/shift are needed. If 1 op./shift already works in M1, 4 new operators (or 2 op/shift) have to be hired.
- ✓ **Operators M5**: 21 machines and 11 op./shift are needed. If 6 op/shift already works in M5, 10 new operators (or 5 op/shift) have to be hired.

Therefore:

```
    Investment cost M1 = 4 * (150000 *0.05) = 30000 Euro/year
    Investment cost M5 = 9 * (250000 *0.05) = 112500 Euro/year
    Labour cost M1 = 2 * 13.5 €/hour * 7.5 hours/shift * 220 days/year + 2 * 14.5 €/hour * 7.5 hours/shift * 220 days/year = 92400 €/year
    Labour cost M5 = 5 * 13.5 €/hour * 7.5 hours/shift * 220 days/year + 5 * 14.5 €/hour * 7.5 hours/shift * 220 days/year = 231000 €/year
```

Total cost M1+M5 = 30000 + 112500 + 92400 +231000 = 465900 €/year

MECHOFF – 3e New Machines + overtime

Assumptions:

- ✓ Required capacity in M1 = 13996 hours/year
- ✓ Required capacity in M5 = 53002 hours/year

One machine working in overtime works for 3273,6 hours/year (220days/year*2 shift/day* 7,5 hours/shift +792 overtime hours/year) * 0,8

Number of required machines M1: 13996/3273,6 = 5 machines Since there are already 2 machines, the number of **new machines** will be 3

Number of required machines M5: 53002/3273,6 = 17 machines Since there are already 12 machines, the number of **new machines** will be 5

<u>Remark</u>: the procedure adopted in this case is a variant of the procedure previously used The solution is found by:

- 1. Evaluating the **required capacity** to satisfy the demand in M1 and M5;
- 2. Verifying the available capacity with one machine working in both M1 and M5 dept.s
- 3. Identifying the number of **new machines**, added within the current configuration

MECHOFF – 3e Economic Assessment

Assumptions:

- ✓ **Total cost** = investment cost M1+ operators cost M1 + investment cost M5+ operators cost M5 + overtime cost
- ✓ **Operators M1**: 5 machines and 3 operators/shift are needed. If 1 operator per shift already works in M1, 4 new operators (or 2 op./shift) have to be hired.
- ✓ Operators M5: 17 machines and 9 operators/shift are needed. If 6 operators per shift already work in M5, 6 new operators (or 3 op./shift) have to be hired.

Therefore:

➤ Investment cost M1: 3* (150.000 *0,05) = 22.500 Euro/year

►Investment cost M5: 5* (250.000 *0,05) = 62.500 Euro/year

Labour cost M1: 2* 13,5 €/h * 7,5 h/shift* 220 d/y + 2*14,5 €/h * 7,5

h/shift* 220 d/y = **92.400 €/year**

Labour cost M5: 3* 13,5 €/h * 7,5 h/shift* 220 d/y + 3* 14,5 €/h * 7,5

h/shift* 220 d/y = **138.600 €/year**

Covertime cost: 3 operators work in M1 and 9 operators work in M5 → Overtime cost:

21€/hour * 792 hours/year * (3+9) = **199584 €/year**

>Total cost = 22500 + 62500 + 92400 + 138600 + 199584 = 515584 €/year

MECHOFF – 3f New Mach + overt + 3rd shift

Assumptions:

- ✓ With the 3rd shift, the only possible overtime is Saturday.
- ✓ Required capacity in M1 = 13996 hours/year
- ✓ Required capacity in M5 = 53002 hours/year

A machines working 3 shifts during the week and 1 shift on Saturdays works for 4241,6 hours/year

(3 shifts/day*7,5 hours/shift*220 days/year + 352 overtime hours/year)*0,8.

Number of required machines M1: 13996/4241,6 = 4 machines Since there are already 2 machines, the number of **new machines** will be 2

Number of required machines M5: 53002/4241,6 = 13 machines Since there are already 12 machines, the number of **new machines** will be 1

MECHOFF – 3f Economic Assessment

Assumptions:

✓ **Total cost** = investment cost M1+ operators cost M1 + investment cost M5+ operators cost M5 + overtime cost

✓ Operators M1: 4 machines and 2 op/shift are needed. If 1 op/shift already works in M1,1 op./shift and 2 new op. for the 3rd shift have to be hired.

✓ Operators M5: 13 machines and 7 op/shift are needed. If 6 op/shift already work in M5,1 op./shift and 7 new op. for the 3rd shift have to be hired.

Investment cost M1: 2* (150.000 *0,05) = 15,000 Euro/year

Investment cost M5: 1* (250.000 *0,05) = 12,500 Euro/year

Labour cost M1: (1 * 13,5 €/h + 1 * 14,5 €/h + 2 * 15,5 €/h) * 7,5

h/shift* 220 d/y = **97.350 €/year**

Labour cost M5: (1 * 13,5 €/h + 1 * 14,5 €/h + 7 * 15,5 €/h) * 7,5

h/shift* 220 d/y = **225.225 €/year**

Overtime cost: 2 operators work in M1 and 7 operators work in M5

21€/h * (220/5) Sat/y * 8 h/Sat * (2+7) = 66528 €/year

Total cost = 15000 + 12500 + 97350 + 225225 + 66528 = 416603 €/year

MECHOFF – Concluding remarks

Required Capacity M1: 13996 hours/year

M5: 53002 hours/year

Missing Capacity M1: 8716 hours/year

M5: 21322 hours/year

	Alternative	Cost (€/year)	No. of M1	No. of M5	Number of overtime hours	Number of third shift hours
Α	Overtime	Not enough	2	12	8870	0
В	3° shift	Not enough	2	12	0	18480
С	3° shift + new machines	362 575	4	<u>14</u>	<u>0</u>	29700
D	New machines	465 900	6		0	0
Ε	New machines + overtime	515 584	5	17	195148	0
F	New machines + overtime + 3° shift	416 603	4	13	5610	28050

The most convenient is alternative c