Outline

Case study 1 "Mechoff"
Design of manufacturing systems - Job Shop

- Introduction
- Input data
- Top management's questions

MECHOFF - Top Management's questions

> Is it possible to meet demand without buying any new machines (just varying the number of shifts)?
$>$ Or is it necessary to buy new machines (how many)?

> Space is not a constraint because an eventual new expansion of the manufacturing plant was taken into account in the design of layout.

MECHOFF - Draft solution

Objective

To find the best alternative which allows the company to process all products of family SP in house at the lowest costs.

Assumptions:
\checkmark The production cycle of family SP includes 3 operations: milling (M1), drilling (M2) and face grinding (M5).
\checkmark Drilling capacity is considered to be available (no further investigation is needed)

MECHOFF - Draft solution

Procedure

The following steps can be followed to find the best solution:

1. Evaluating the required capacity to satisfy the demand in M1 and M5.
2. Verifying the available capacity in both M1 and M5 departments with the current configuration and, hence, the amount of missing capacity.
3. Identifying potential alternatives to provide the missing capacity:
$\checkmark \quad$ using overtime
\checkmark adding one shift
\checkmark buying new machines
$\checkmark \quad$ a mix of the above mentioned alternatives.

MECHOFF - 1. Required capacity

It can be evaluated with the following formula (please make sure that all time elements are expressed with the same unit of measure)

$$
N H_{i}=\sum_{j=1}^{N}\left(\frac{T_{i j} \cdot Q_{j}}{3600 \cdot\left(1-S R_{i j}\right)}+\frac{S T T_{i j}}{60} \cdot N L_{j}\right) \cdot \frac{1}{A_{i}} \cdot \frac{1}{H C_{i}} \cdot \frac{1}{T R_{i}}
$$

Where:
$>\mathrm{i}=$ index of the machine-type
$>\mathrm{j}=$ index of the product-type
> $\mathrm{N}=$ number of different product-types
$>\mathrm{Tij}=$ unit working time [seconds/piece]
> $\mathrm{Qj}=$ quantity of product-type j that has to be produced [pieces/year]
$>$ SRij $=$ scrap rate $\quad(0 \leq$ SRij $<1)$
$>\mathrm{STTij}=$ setup time [minutes/setup]
$>\mathrm{NLj}=$ number of lots of product-type j [lots/year]
$\Rightarrow \mathrm{Ai}=$ availability $\quad(0<\mathrm{Ai} \leq 1)$
$>\mathrm{HCi}=$ human coefficient $(0<\mathrm{HCi} \leq 1)$
$>\mathrm{TRi}=$ trial rate
$(0<\mathrm{TRi} \leq 1)$

MECHOFF - Required capacity - Deptm M1

ltem	Yearly demand (units/year)	Working time (hours/unit)	Required hours (hrs/y)) TLij * Qj	N. of lots per year	Setup time (hours/setup)	$\begin{aligned} & \text { Setup hours } \\ & \text { (hrs/y) TPMij *Nj } \end{aligned}$
PZ1	500	0.55	275	10	3	30
PZ2	500	0.25	125	12	1.5	18
PZ3	500	0.4	200	18	2	36
PZ4	500	0.4	200	9	2	18
D11	2500	0.2	500	40	2	80
DI2	3400	0.2	680	40	1.5	60
D13	6250	0.3	1875	30	1.5	45
D14	5000	0	0	25	1	
D15	500	0.2	100	15	1	15
R01	8000	0	0	30	1	
RO2	500	0	0	5	1	
R03	6500	0	0	20	1	
R04	500	0	0	10	1	
R05	10000	0	0	50	1	
SP1	5000	0.5	2500	25	1.5	37.5
SP2	7000	0.45	3150	35	1	35
SP3	2600	0.3	780	13	1.2	15.6
SP4 (new item!)	2000	0.6	1200	20	2	40
		total	11585		total	430
		scrap rate	11585/0.96 =			

MECHOFF - Required capacity - Deptm M5

Item	Annual demand (units/year)	Working time (hours/unit)	Required hours (hours/year) TLij * Qj	N. of lots per year	Setup time (hours/setup)	Setup hours (hours/year) TPMij * Nij
PZ1	500	0	0	10	1	
PZ2	500	0	0	12	1	
PZ3	500	0	0	18	1	
PZ4	500	0	0	9	1	
D11	2500	0.5	1250	40	1	40
D12	3400	1	3400	40	0.5	20
D13	6250	0.7	4375	30	1	30
D14	5000	0.2	1000	25	0.5	12.5
D15	500	0	0	15	1	1
RO1	8000	0.5	4000	30	2.5	75
RO2	500	0.95	475	5	3	15
RO3	6500	0.98	6370	20	2.5	50
RO4	500	1.05	525	10	3	30
RO5	10000	0.65	6500	50	4	200
SP1	5000	1.2	6000	25	2	50
SP2	7000	0.8	5600	35	1.5	52.5
SP3	2600	0.9	2340	13	1	13
SP4 (new item!)	2000	1.5	3000	20	2	40
		total	44835		total	628
			$4483510,96=46703$			

MECHOFF - Required capacity

Department M1

$$
\mathrm{NH}_{\mathrm{M} 1}=\sum_{\mathrm{j}=1 \ldots \mathrm{j}}\left\{\mathrm{TLij} * \mathrm{Qj} /(1-\mathrm{SRj})+\mathrm{TPMij} * \mathrm{Nlj}^{\prime}\right\} \quad 1 / \mathrm{Ai}^{*} 1 / \mathrm{HCi} * 1 / \mathrm{TRi}=
$$

$$
=(12068+430) * 1 / 0.95 * 1 / 0.94 * 1=\mathbf{1 3 9 9 6} \text { hours } / \text { year }
$$

Department M5

$\mathbf{N H}_{\text {M5 }}=\sum_{\mathrm{j}=1 \ldots \mathrm{~J}}\left\{\mathrm{TLij}{ }^{*} \mathrm{Qj} /(1-\mathrm{SRj})+\mathrm{TPMij}{ }^{*} \mathrm{Nlj}\right\}{ }^{*} 1 / \mathrm{Ai}{ }^{*} 1 / \mathrm{HCi}{ }^{*} 1 / \mathrm{TRi}=$ $=(46703+628) * 1 / 0.95 * 1 / 0.94 * 1=53002$ hours/year

MECHOFF - 2. Available vs. missing capacity

$$
\mathrm{AH}_{\mathbf{i}}(\mathbf{s})=\mathrm{WH}_{\mathbf{i}}(\mathbf{s}) \cdot \mathbf{S E}
$$

where:
$\mathrm{WH}_{\mathrm{i}}(\mathrm{s})=$ yearly working time available (depending on the number of shifts/day) SE $=$ scheduling efficiency $(0<S E \leq 1)$, in this case it is equal to 0.8
$\mathbf{A H}_{\mathbf{M 1}}=2$ machines * 7.5 hours/shift * 2 shifts * 220 days/year) * 0.8 = 5280 hours/year

Missing capacity in M1 = $\mathbf{1 3 9 9 6} \mathbf{- 5 2 8 0}=\mathbf{8 7 1 6}$ hours/year
$\mathbf{A H}_{\text {M5 }}=12$ machines * (7.5 hours/shift * 2 shifts * 220 days/year) * 0.8 = 31680 hours/year

Missing capacity in M5: 53002-31680 = $\mathbf{2 1 3 2 2}$ hours/year

MECHOFF - 3. Evaluation of alternatives

Assumptions about the number of operators/machines:
\checkmark in the current configuration there are 29 machines
$\checkmark 30$ operators working on two shifts
$>$ therefore, it is possible to assume that 15 operators work on the shop floor each shift
$>$ on average, one operator supervises $\mathbf{2}$ machines.

MECHOFF - 3a Overtime only

Assumptions:

\checkmark Overtime can be used for not more than 2 hours/day during the week
\checkmark Overtime can be applied on 8 hours basis on Saturday.
Therefore, max overtime (OT) for one machine in one year is:
OT = 2 hours/day * 220 days/year + (220/5) Saturday/year * 8
hours/Saturday $=792$ hours/year
OT ${ }_{\text {m1 }}=2$ machines * 792 hours/year * $0.8=1267$ hours/year
OT ${ }_{\text {м5 }}=12$ machines * 792 hours/year * $0.8=\mathbf{7 6 0 3}$ hours/year

Conclusion: the use of overtime is not enough to meet the demand of missing capacity. Therefore, overtime can be used only in combination with other alternatives.

MECHOFF - 3b Adding 3rd shift

Assumptions:

\checkmark Number of machines stays the same
Adding the third shift the following capacity (hours) is available:

$$
\begin{aligned}
\mathrm{AH}_{\mathrm{M} 1} & =2 \text { machines * }(7.5 \text { hours/shift* } 220 \text { days/year) * } 0.8 \\
& =\mathbf{2 6 4 0} \text { hours/year } \\
\mathbf{A H}_{\mathrm{M} 5} & =12 \text { machines * }(7.5 \text { hours/shift* } 220 \text { days/year) * } 0.8 \\
& =15840 \text { hours/year }
\end{aligned}
$$

Note: in case of third shift, it is possible to use overtime only on Saturday:

Conclusion: the addition of the third shift is not sufficient to satisfy the entire demand.

MECHOFF - 3c Adding $3^{\text {rd }}$ shift + new mach.

Assumptions:

\checkmark Missing hours M1 $=8716 \mathrm{hrs} / \mathrm{y}$
$\checkmark \mathrm{AH}_{\mathrm{M} 1}$ (third shift) $\quad=2640 \mathrm{hrs} / \mathrm{y}$
\checkmark Additional capacity which is needed $(\triangle) \quad=6076 \mathrm{hrs} / \mathrm{y}$
> Additional capacity/machine $=7.5$ hours/ shifts * 3 shifts/day * 220 days/year * 0.8 = 3960 hours/year
> The number of new machines is $=6076 / 3960=1.53$

Conclusion: two new machines are needed.
The average level of saturation in the M1 department would be:
Required hours/Available hours $=13996 /((2+2$ machines $) * 3960))=$ 0.88

MECHOFF - 3c Adding $3^{\text {rd }}$ shift + new mach.

Assumptions:

\checkmark Missing hours M5 $\quad=21322 \mathrm{hrs} / \mathrm{y}$
$\checkmark \mathrm{AH}_{\mathrm{M} 5}$ (third shift) $=15840 \mathrm{hrs} / \mathrm{y}$
\checkmark Additional capacity which is needed $(\triangle)=5482 \mathrm{hrs} / \mathrm{y}$
$>$ Additional capacity/machine $=7.5$ hours/ shifts * 3 shifts/day * 220 days/year * $0.8=3960$ hours/year
$>$ The number of new machines is $=5482 / 3960=1.38$

Conclusion: two new machines are needed.
The average level of saturation in the M5 department would be:
Required hours/Available hours $=53002 /((12+2$ machines $) * 3960)=$ 0.95

MECHOFF - 3c Economic assessment

Assumptions M1:

\checkmark Total cost = investment cost M1 + operator cost M1
\checkmark In the new configuration there are 4 machines and 2 operators/shift are needed at M1
\checkmark Assuming that nr 1 operator per shift already works at M1, 2 new operators for the third shift and 2 operators for the other 2 shifts (or 1 operator/shift) have to be hired.

Therefore:
$>$ Investment cost M1 = 2 * $(150000$ *0.05 $)=15000$ Euro/year
> Labour cost M1 = 1 * $13.5 € /$ hour * 7.5 hours/shift * 220
days/year

+ 1 * 14.5 €/hour * 7.5 hours/shift * 220
days/year
+ 2 * 15.5 €/hour * 7.5 hours/shift * 220
days/year

MECHOFF - 3c Economic assessment

Assumptions M5:

\checkmark Total cost = investment cost M5+ operator cost M5
\checkmark In the new configuration there are 14 machines and 7 operators/shift are needed.
\checkmark Assuming 6 operators per shift already works in the department M5, 2 new operators (or 1 operator/shift) for the first 2 shifts and 7 for the third shift have to be hired.

Therefore:
> Investment cost M5 = 2 * (250000 *0.05) = 25000 Euro/year
$>$ Labour cost M5 $=1$ * 13.5 €/hour * 7.5 hours/shift * 220 days/year

+ 1 * 14.5 €/hour * 7.5 hours/shift * 220 days/year
+7 * 15.5 €/hour * 7.5 hours/shift * 220 days/year
$=225225$ €/year
Total cost M1+M5 = 15000 + 97350 + 25000 + 225225 = 362575 €/year

MECHOFF - 3d Adding new machines (2 shifts)

Assumptions:

\checkmark Missing hours M1 = 8716 hrs $/ \mathrm{y}$
> Additional capacity/machine $=7.5$ hours/shifts * 2 shifts/day * 220 days/year * 0.8 = 2640 hours/year
> The number of new machines is $=8716 / 2640=3.3$ i.e. $n \mathrm{n} 4$
> Missing hours M5 = $21322 \mathrm{hrs} / \mathrm{y}$
> Additional capacity/machine $=7.5$ hours/shifts * 2 shifts/day * 220 days/year * 0.8 = 2640 hours/year
> The number of new machines is $=21322 / 2640=8.1$ i.e. $n r 9$

MECHOFF - 3d Economic assessment

Assumptions:

\checkmark Total cost = investment cost M1+ operator cost M1 + investment cost M5 + operator cost M5
\checkmark Operators M1: 6 machines and 3 operators/shift are needed. If $1 \mathrm{op} . /$ shift already works in M1, 4 new operators (or $2 \mathrm{op} /$ shift) have to be hired.
\checkmark Operators M5: 21 machines and 11 op ./shift are needed. If $6 \mathrm{op} /$ shift already works in M5, 10 new operators (or $5 \mathrm{op} /$ shift) have to be hired.

Therefore:
> Investment cost M1 = 4 * (150000 *0.05) = 30000 Euro/year
$>$ Investment cost M5 = 9 * (250000 *0.05) =112500 Euro/year
$>$ Labour cost M1 $=2$ * $13.5 € /$ hour * 7.5 hours/shift * 220 days/year

$$
\text { + } 2 \text { * } 14.5 € / \text { hour * } 7.5 \text { hours/shift* } 220 \text { days/year }
$$

$$
=92400 € / \text { year }
$$

$>$ Labour cost M5 $=5$ * 13.5 €/hour * 7.5 hours/shift * 220 days/year
+5 * 14.5 €/hour * 7.5 hours/shift* 220 days/year
$=231000$ €/year
Total cost M1+M5 = 30000 $+112500+92400+231000=465900 € /$ year

MECHOFF - 3e New Machines + overtime

Assumptions:

\checkmark Required capacity in M1 = 13996 hours/year
\checkmark Required capacity in M5 $=53002$ hours/year
One machine working in overtime works for 3273,6 hours/year (220days/year*2 shift/day* 7,5 hours/shift +792 overtime hours/year) * 0,8

Number of required machines M1: 13996/3273,6 = 5 machines Since there are already 2 machines, the number of new machines will be 3

Number of required machines M5: 53002/3273,6 = 17 machines Since there are already 12 machines, the number of new machines will be 5

Remark: the procedure adopted in this case is a variant of the procedure previously used The solution is found by:

1. Evaluating the required capacity to satisfy the demand in M1 and M5;
2. Verifying the available capacity with one machine working in both M1 and M5 dept.s
3. Identifying the number of new machines, added within the current configuration

MECHOFF - 3e Economic Assessment

Assumptions:

\checkmark Total cost = investment cost M1+ operators cost M1 + investment cost M5+ operators cost M5 + overtime cost
\checkmark Operators M1: 5 machines and 3 operators/shift are needed. If 1 operator per shift already works in M1, 4 new operators (or 2 op./shift) have to be hired. \checkmark Operators M5: 17 machines and 9 operators/shift are needed. If 6 operators per shift already work in M5, 6 new operators (or 3 op./shift) have to be hired.

Therefore:
$>$ Investment cost M1: $\quad 3^{*}(150.000 * 0,05)=22.500$ Euro/year
$>$ Investment cost M5: \quad 5* $(250.000$ *0,05) $=62.500$ Euro/year
$>$ Labour cost M1: $\quad 2^{*} 13,5 € / h^{*} 7,5 \mathrm{~h} /$ shift* $^{2} 220 \mathrm{~d} / \mathrm{y}+$ 2* $^{*} 14,5$ €/h * 7,5 h/shift* $220 \mathrm{~d} / \mathrm{y}=92.400$ €/year
$>$ Labour cost M5: $\quad 3^{*} 13,5 € / \mathrm{h} * 7,5 \mathrm{~h} /$ shift* $220 \mathrm{~d} / \mathrm{y}+3^{*} 14,5 € / \mathrm{h} * 7,5$ h/shift* $220 \mathrm{~d} / \mathrm{y}=138.600$ €/year
$>$ Overtime cost: $\quad 3$ operators work in M1 and 9 operators work in M5 $21 € /$ hour * 792 hours/year * $(3+9)=199584$ €/year
$>$ Total cost $=22500+62500+92400+138600+199584=515584 \boldsymbol{\epsilon} /$ year

MECHOFF - 3f New Mach + overt + $\mathbf{3}^{\text {rd }}$ shift

Assumptions:

\checkmark With the $3^{\text {rd }}$ shift, the only possible overtime is Saturday.
\checkmark Required capacity in M1 = 13996 hours/year
\checkmark Required capacity in M5 $=53002$ hours/year
A machines working 3 shifts during the week and 1 shift on Saturdays works for 4241,6 hours/year
(3 shifts/day*7,5 hours/shift*220 days/year + 352 overtime hours/year)*0,8.
Number of required machines M1: 13996/4241,6 = 4 machines
Since there are already 2 machines, the number of new machines will be 2
Number of required machines M5: 53002/4241,6 = 13 machines
Since there are already 12 machines, the number of new machines will be 1

MECHOFF - 3f Economic Assessment

Assumptions:

\checkmark Total cost $=$ investment cost M1+ operators cost M1 + investment cost M5+ operators cost M5 + overtime cost
\checkmark Operators M1: 4 machines and $2 \mathrm{op} /$ shift are needed. If $1 \mathrm{op} /$ shift already works in M1,1 op./shift and 2 new op. for the 3rd shift have to be hired.
\checkmark Operators M5: 13 machines and $7 \mathrm{op} /$ shift are needed. If $6 \mathrm{op} /$ shift already work in M5,1 op./shift and 7 new op. for the $3^{\text {rd }}$ shift have to be hired.

Investment cost M1:	$2^{*}(150.000$ * 0,05$)=15,000$ Euro/year
Investment cost M5:	1* (250.000 * 0,05) $=12,500$ Euro/year
Labour cost M1:	$\begin{aligned} & (1 * 13,5 € / \mathrm{h}+1 * 14,5 € / \mathrm{h}+2 * 15,5 € / \mathrm{h}) * 7,5 \\ & \mathrm{~h} / \text { shift* } 220 \mathrm{~d} / \mathrm{y}^{*}=97.350 € / \text { year } \end{aligned}$
Labour cost M5:	$\begin{aligned} & (1 * 13,5 € / \mathrm{h}+1 * 14,5 € / \mathrm{h}+7 * 15,5 € / \mathrm{h}) * 7,5 \\ & \text { h/shift* } 220 \mathrm{~d} / \mathrm{y}=\mathbf{2 2 5 . 2 2 5} € / \text { year } \end{aligned}$
Overtime cost:	2 operators work in M1 and 7 operators work in M5 $21 € / \mathrm{h}$ * $(220 / 5)$ Sat/y * 8 h/Sat * $(2+7)=66528$ €/yea

Total cost $=15000+12500+97350+225225+66528=\underline{416603} € /$ year

MECHOFF - Concluding remarks

