Design of Manufacturing Systems – Manufacturing Cells

Outline

- General features
- Examples
- Strengths and weaknesses
- Group technology steps
- System design
- Virtual cellular manufacturing

The machines are grouped on the basis of the **processing requirements** of the part families (different technological processes / machines in the same cell).

When cellular manufacturing is applied, parts are grouped into **part families** and machines into **cells**.

The machines are grouped on the basis of the **processing requirements** of the part families (different technological processes / machines in the same cell).

^(*) Product and part are terms used as synonymous during this course

Each product has its own **routing** within the cell (this is the case <u>when</u> <u>no inter-cell move</u> is required > case of complete cell independence).

Example 1

Some examples

- https://www.youtube.com/watch?v=E54HAZWQpys
- https://www.youtube.com/watch?v=c50_IAIfzsk
- https://www.youtube.com/watch?v=Ynhp8Wi2qwM

When cellular manufacturing is applied, it may lead to:

- re-arrange existent equipment on the factory floor (i.e. machines, ...);
- operate with new equipment, often incorporating various forms of flexible automation (i.e. from machines, material handling equipment, ..., to FMC/FMS).

In other words, a typical question related to system design is required – "*which machines and their associated parts should be grouped together to form cells?*" – before re-arranging existent equipment on the factory floor, or incorporating flexible automation.

Manufacturing cells – Strengths

- Rationalization of material flows
- Setup time reduction
- Production management is easier

- Overall (compared to the job-shop):
 - □ WIP reduction
 - □ Lead time reduction (also considering variability)
 - □ More reliable estimates of delivery lead times

Manufacturing cells – Strengths

- Job enlargement + job enrichment for employees
- Team work within the cell
- Unification of product and process responsibilities
- More control on the quality characteristics of the products

Manufacturing cells – Weaknesses

- Difficulties with work load balancing between cells
- Problems related to production mix variability
- Difficulties with the application to the whole stages of the production chain
- In some cases, necessity of more machines than in a job shop
- Difficulties to manage technological operations outside the cells
- Problems related to breakdowns

Group technology – Steps

- Data collection regarding the production mix and technological routings
- Classification of products
- Standardization of products
- Standardization of technological routings
- Identification of product families
- Identification of machine groups forming the cells

Rough design of a manufacturing cell

After the identification of product families and machine groups, the cells design can be based on the same approach used for the job-shop:

- calculate the number of machines of type i necessary in the cell;
- evaluate the number of shifts/day, computing the yearly costs adopting 1, 2 or 3 shifts/day.

Group technology – Methods

Identification of product families based on the classification of products

- Informal methods
 - > Based on geometrical features
 - Based on technological features
- Part coding analysis methods
 - Based on geometrical features
 - > Based on technological features

Group Technology

Similar prismatic parts requiring similar milling operations

Dissimilar parts requiring similar machining operations (hole drilling, surface milling

MATINentical designed parts requiring completely different manufacturing processes 17

Based on the classification of products

□ Based on geometrical features of products

Based on the classification of products

Based on technological features of products

Based on the classification of products Part coding analysis (example 1)

Based on the classification of products

Opitz coding system

Form code: for design attributes (1-5 digits)

Supplementary code: for manufacturing attributes (6-9 digits)

Based on the classification of products

ſ	Digit 1 Digit 2			_	Digit 3				Digit 4			Digit 5					
	Part class			External shape, external shape elements			Internal shape, internal shape elements			ternal shape, ll shape elements		Plane surface machining			Auxiliary holes and gear teeth		
	0	L/D ≤ 0.5	0	0 Smc		Smooth, no shape elements		No hole, no breakthrough		0	No surface machining		0	,	No auxiliary hole		
	1	0.5 < L/D < 3	1	e end		No shape elements	1	1	bed	No shape elements	1	Surface plane and/or curved in one direction, external		1		Axial, not on pitch circle diameter	
	onal parts	L/D≥3	2	ped to on	booth	Thread	2	oth or star	o one end	Thread	2	External plane surface related by graduation around the circle	e	2	l di	Axial on pitch circle diameter	
1	Rotatic		3	Step	OT SIT	Functional groove	3	Smo	DIIIC 1	Functional groove	3	External groove and/or slot		3	lo gear tee	Radial, not on pitch circle diameter	
4	ł		4	n ends		No shape elements	4	ends		No shape elements	4	External spline (polygon)		4		Axial and/or radial and/or other direction	
5			5	ed to both		Thread	5	ed to both		Thread	5	External plane surface and/or slot, external spline		5		Axial and/or radial on PCD and/or other directions	
6	s		6	Stepp		Functional groove	6	Steppe		Functional groove	6	Internal plane surface and/or slot]	6		Spur gear teeth	
7	onal part	Sa.		7		Functional cone		Functional cone		7	Internal spline (polygon)		7	ŝth	Bevel gear teeth		
8	Nonrotati		8		Ор	erating thread	8	8 (Operating thread		Internal and external polygon, groove and/or slot	1	8	h gear tee	Other gear teeth	
2	M	DITA	9			All others	9			All others	9	All others		9	Wit	All others	

Group technology – Methods

- Identification of product families / machine groups forming the cells simultaneously based on PFA (Production Flow Analysis)
 - Cluster analysis
 - > ROC (Rank Order Clustering)
 - Similarity coefficients
 - Graph partitioning
 - Mathematical programming

Based on PFA – Rank Order Clustering

- □ Step 1: read each row as a binary number
- □ Step 2: order rows according to descending binary numbers
- □ Step 3: read each column as a binary number
- Step 4: order columns according to descending binary numbers
- Step 5: if on steps 2 and 4 no reordering happened go to step 6, otherwise go to step 1
- □ Step 6: stop

Rank Order Clustering – Example (1/3)

Machine/part matrix

 $a_{ij} = 1$ if part j visits machine i $a_{ij} = 0$ otherwise

MACHINE		_	Decimal						
ТҮРЕ	1	2	3	4	5	6	7	8	number
Α	1	1	0	0	1	0	0	0	200
B	0	0	0	1	0	0	0	1	17
С	0	1	1	0	0	1	1	0	102
D	0	0	0	1	0	0	0	1	17
E	0	0	1	1	0	1	1	0	54
\mathbf{F}	1	1	0	0	1	0	0	0	200

(binary number) $1 \ge 2^7 + 1 \ge 2^6 + 0 \ge 2^5 + 0 \ge 2^4 + 1 \ge 2^3 + 0 \ge 2^2 + 0 \ge 2^1 + 0 \ge 2^0 = 200$

Rank Order Clustering – Example (2/3)

MACHINE			PI	ROD	UC	ΓS			Decimal			
TYPE	1	2	3	4	5	6	7	8	number			
Α	1	1	0	0	1	0	0	0	200			
F	1	1	0	0	1	0	0	0	200			
С	0	1	1	0	0	1	1	0	102			
Ε	0	0	1	1	0	1	1	0	54			
B	0	0	0	1	0	0	0	1	17			
D	0	0	0	1	0	0	0	1	17			
Decimal n.	48	56	12	7	48	12	12	3				

(binary number) 1 x 2^5 + 1 x 2^4 + 1 x 2^3 + 0 x 2^2 + 0 x 2^1 + 0 x 2^0 = 56

Rank Order Clustering – Example (3/3)

MACHINE			PF	ROD	UC	ΓS		Decimal						
TYPE	2	1	5	3	6	7	4	8	number					
Α	1	1	1	0	0	0	0	0	224	224				
F	1	1	1	0	0	0	0	0	224					
С		0	0	1	1	1	0	0	156					
E	0	0	0	1	1	1	(1)	0	30					
В	0	0	0	0	0	0	1	1	3					
D	0	0	0	0	0	0	1	1	3					
Decimal n.	56	48	48	12	12	12	7	3						
	Exceptional parts Cell													
	□ 3]	potential cel	ls											
	ן ש טו	iy ope	eration	is from	n thire	i parti	les							

Based on PFA – Similarity coefficients Single Linkage Clustering Algorithm (SLCA)

1. compute the similarity coefficients **between i and j**:

a_{ii}=number of parts worked by both the machines.

2. Compute the similarity matrix.

3. Given a threshold, group parts with higher similarity coefficient

Based on PFA – Similarity coefficients Single Linkage Clustering Algorithm (SLCA)

Machines/parts matrix

Metodi basati su coefficienti di somiglianza Single Linkage Clustering Algorithm (SLCA)

Similarity matrix (McAuley):

	А	В	С	D	E	F	G	Н	I
А	-	0	1/6	1/6	1/2	1/6	0	1/4	0
В		-	0	0	0	0	1/3	0	0
С			-	3/5	0	3/5	0	0	3/5
D				-	0	3/5	0	0	3/5
E					-	0	0	2/3	0
F						-	0	0	3/5
G							-	0	0
Н								-	0
I									-

Based on PFA – Similarity coefficients Single Linkage Clustering Algorithm (SLCA)

Dendrogram

Similarity coefficient equal to 2/3 means grouping E and H. For similarity coefficients smaller, it is possible to group more parts.

Based on PFA – Similarity coefficients Single Linkage Clustering Algorithm (SLCA)

Dendrogram

Similarity coefficient equal to 2/3 means grouping E and H. For similarity coefficients smaller, it is possible to group more parts.