Throughput diagrams

Given a production system

- Fin, Fout input/output frequency (rate) (pcs/d)
- Nin, Nout input/output number of pieces starting from $t=0$ (pcs)

Funnel Model

The throughput diagram is a model used to monitor the process in the funnel (production system) \Rightarrow starting from the funnel events (arrivals, exit) it is possible to build up a throughput diagram per area (input/output diagram)

Funnel model

Funnel Model

Input/output diagram

- Hp: production system with steady load (Fin = constant)
- On that condition, the trend of number of parts in input Nin is linear
\square If the bottleneck is not saturated (Fin < THmax), the number of pieces in output from the system Nout will have the same trend shifted to the right.

Input/output diagram

Input/output diagram

- When Fin is over THmax (THcb), the number of parts in input cannot be worked and, for that reason, WIP and LT will increase

Input/output diagram

Input/output diagram

Input/output diagram

Input/output diagram

Diagram in a real situation

Data collection from production data feedback registry

Order number	Work content TO [hour/order]	Data input [calendar day]	Data output [calendar day]
1	20	98	100
2	21	94	102
3	19	101	103
4	23	101	105
5	11	102	106

Work content of the orders

- Order work content (TO) is the sum of set up time and work time (or processing time) of the parts within a production batch

$$
T O=\frac{T S+L S \times T P}{60}
$$

- Where
\square TO work content of the order [hour / order]
\square TS standard setup time [min / order]
\square LS standard batch dimension [\# parts / order]
\square TP standard processing time of a single piece [min / part]

Input/output curves

WIP level curve

Performance indicators

Performance indicators

- Vertical distance

$$
W I P(T)=I N(T)-O U T(T)
$$

\square WIP(T) WIP level at time T
$\square \mathrm{IN}(\mathrm{T}) \quad$ Sum of work content orders arrived in the system before time T
\square OUT(T) Sum of work content orders completed by the system before time T

Performance indicators

- Mean vertical distance
WIPm Mean level of WIP [hour]
\square T0
start of monitoring period [SCD - Stock Calendar Days]T1 end of monitoring period [SCD]

Performance indicators

- Mean rate of Output curve (ROUTm)
\square ROUTm mean output rate [SCD]
$\square \mathrm{TOj} \quad$ work content of order j [hour/order]
\square nout number of orders completed within monitoring period
$\square \mathrm{P} \quad$ length of monitoring period [SCD]

$$
R O U T_{m}=\frac{\sum_{j=1}^{n_{\text {out }}} T O_{j}}{P}
$$

\square RINm rate is defined in the same way, using the number of incoming orders nin within monitoring period

Performance indicators

- The higher RINm, the greater the number of hours requested, in terms of production capacity, from the orders in input within the monitoring period
- The higher ROUTm, the greater the available production capacity to complete the orders arrived within monitoring period
- A stable system has ROUTm $\cong \mathrm{RINm}$

Performance indicators

- Mean horizontal distance
\square Operative autonomy Am is a measure of the time (calendar time) after which, in absence of incoming orders, the station becames empty

$$
A_{m}=\frac{W I P_{m}}{R O U T_{m}}
$$

\square Am Mean operative autonomy [SCD]
\square WIPm Mean level of WIP [hours]
\square ROUTm Mean output rate [hours / SCD]

Performance indicators

- Mean use of production capacity measures how much production capacity (ROUTm) is used given the maximum production capacity (ROUTmax)

$$
U T_{m}=\frac{R O U T_{m}}{R O U T_{\max }} \times 100
$$

\square UTm Mean use of production capacity
\square ROUTmax = Maximum (standard) production capacity available in a station

- UTm measures the percentace of inefficiencies (leaks) related to internal and external causes
- 1-UTm is the mean leak

Use of diagram

- The analysis of throughput diagram helps to check the existence of production capacity leaks.
- This leaks can be caused by:
\square "Internal" causes
\square "External" causes

No supply

Diagram uses

- Leaks are characterized by
\square Causes: Events within production area (es. failures, breaks, operators unavailability)
\square Symptoms: Decrease of ROUTm without RINm reduction
- "Internal" leaks can depend on performances of external support processes
\square E.g. no supply
- Symptom: reduction of RINm
\square E.g. the next station/area does not consume correctly the material produced by this station/area and, for that reason, the interoperational buffer is filled (blocking)
- Sympton: reduction of ROUTm

Diagram uses

Diagram uses

Tempo [giorni a calendario]

Uses of diagram

Ore

Ore
TO 11

Uses of diagram

Input / output curves	Causes
	Internal leaks (e.g. failures, unavailability of auxiliary resources, etc.) or external (blocking)

Diagram uses

Input / output curves	Causes
Contenuto di lavoro Input degli ordini [ore]	External leaks in a previous area, that lead to a no supply' situation

Diagram uses

Input / output curves	Causes
Contenuto di lavoro degli ordini Input [ore]	The available capacity cannot be increased in order to follow the requested capacity : increasing of Rin without a correspondent increasing of Rout (the available capacity is already fully used)
Tempo [giorni a calendario]	

