TIIVE AND METHOD

Predetermined standard times

- The Predetermined Standard Time systems are based on the basic principle that every elementary movement / activity requires practically the same time, with the same working conditions and if performed by a sufficiently skilled executor
- Times are expressed in the particular unit TMU (Time Measurement Unit)
- 1 TMU $=0.00001$ hours $=0.0006 \mathrm{~min}=0.036 \mathrm{sec}$
- 1 hour = 100,000 TMU
- For the calculation of the Standard Times, a correction coefficient F is usually added

Predetermined standard times

- Steps of the method to Predetermined Standard Times:

1. Breakdown of the work to be performed in its basic microelements
2. Identification in the appropriate tables of the TMU values related to the micro-movements
3. Adjustment of values through corrective factors
4. Execution of the sum of the values of all the microelements to be performed to carry out the work
5. Determination of the total standard time

Predetermined standard times

- There are several families and subfamilies of methods / systems for the calculation of predetermined standard times
- The most common (from which derives most of the others) is the family known as MTM (Method Time Measurement)
- The different MTM systems allow the applicability of the method according to the diversity of user needs. The main families are:
- Motion-based systems MTM 1
- Element-based systems MTM II (es. MTM UAS, MTM MEK, MTM-HC)
- Activity-based systems -MOST

Predetermined standard times

- The original MTM method defines the times of the main micromovements of upper limbs, eyes and lower limbs
- The 9 micromovements of the upper part of the body
(Reach)
- (Move)
- (Turn)
- (Apply Pressure)
- (Grasp)
- (Release)
- (Position)
(Disengage)
(Crank)
Each movement corresponds to a table that provides the TMU according to the boundary factors (distances to be covered, weights, shapes of objects ..)

Tempi standard predeterminati

TABLE 7.1 Predicted Move-Time Data in Which a Move is Defined as a Motion of the Hand Required to Transport an Object (from MTM Association for Standards and Research, Fairlawn, NJ 07410)

	Time, TMUs				Allowance			
Distance Moved (cm)	A	B	C	Hand in Motion B	Weight (kg) up to	Constant (TMUs)	Factor	Case and Description
0 to 2	2.9	2.0	2.0	1.7	1	0	1.00	A Move object to other hand or against stop
4	3.1	4.0	4.5	2.8	2	1.6	1.04	
6	4.1	5.0	5.8	3.1			1.07	
8	5.1	5.9	6.9	3.7	4	2.8		
10	6.0	6.8	7.9	4.3				
12	6.9	7.7	8.8	4.9				
14	7.7	8.5	9.8	5.4	6	4.3	1.12	
16	8.3	9.2	10.5	6.0				B Move object to approximate
18	9.0	9.8	11.1	6.5				
20	9.6	10.5	11.7	7.1	8	5.8	1.17	
22	10.2	11.2	12.4	7.6	10	7.3	1.22	

Tempi standard predeterminati

Motion-based (MTM 1)

- MTM 1 is a very detailed and reliable system that focuses on the analysis of the movements of the two hands
- It is suitable for the study of processes:
- to another degree of repetitiveness
- very short cycles,
- when errors of a few TMUs could cause great inconveniences in production and economic convenience
- For example for brake assembly lines

Motion-based

Left hand description	F	$\begin{aligned} & \text { Left hand } \\ & \text { movement } \end{aligned}$	TMU	Right hand movement	F	Right hand description
SCREW 2 BOLTS						
Reach the bolt		R24C	12.5	R24C		Reach the bolt
Grasp		G4B	9.1	-		
		-	9.1	G4B		Grasp
($\begin{aligned} & \text { Bolt to assembly } \\ & \text { Position }{ }^{\text {st }} \text { bolt }\end{aligned}$		M24C	13.0	M24C		Bolt to assembly
		P2SE	16.2	-		
Search thread	2	M2B	4.0	-		
		-	16.2	P2SE		Position $1^{\text {st }}$ bolt
		-	4.0	M2B	2	Search thread
Release		RL1	2.0	RL1	28888	Release
fastening cycle	$\begin{array}{\|l} \hline 8 \\ 8 \\ 8 \\ 8 \\ \hline \end{array}$	R2A	16.0	R2A		
		G1A	16.0	G1A		fastening cycle
		M2B	16.0	M2B		
		RL1	16.0	RL1		
		Total	150.1			
TIGHTEN 2 BOLTS WITH A WRENCH Reach the assembly						
		R-A	12.8	R30B		
		RA	12.8			wrench
Grasp		G1A	3.5	G1B		Grasp
			15.1	M30C		Wrench to
						assembly
			14.7	P1SSD		Position
			1.6	SC2		Static component
			10.9	M20B2		Screw
			11.7	M20C		Recovery with
						wrench
			14.7	P1SSD		Reposition
						Wrench
			9.6	M16B2		Static component Screw
			10.6	APA		Tighten
			13.3	M 30 B		Recovery with
						wrench
		Total				Release

Element-based (MTM 2)

- he Element-based family is a derivative of MTM-1, corresponding to a simplification of the detected movements and a specialization in different sectors
- There are a number of subfamilies of specialization in the sector, e.g. MTM-HC (for the healthcare industry), MTMC (for office work), MTMM (for microscopic work ...)
- MTM UAS is a system derived from MTM-1 through statistical processing of the tabulated data, which does not distinguish the detail movement of the two hands
- It is the result of an aggregation of the basic movements of MTM 1 in main handling elements ,.
- Suitable for processes characterized by significant variations in the production cycle

Element-based (MTM 2)

Description	Code	TMU	F	TMU sum
SCREW2 BOLTS				
Grasp and position bolts	AF2	65		65
	AF1	40		40
Screw with hand	ZB1	10	8	80
		Total		185
TIGHTEN2 BOLTS WITH A WRENCH				
Grasp and reposition wrench	HB2	60		60
Screw	ZA1	5		5
Reposition wrench	ZC1	30		30
Tighten	ZD	20		20

Activity-based (MOST)

- MOST (Maynard Operation Sequence Tecnique) is a faster MTM system than previous families, because it identifies the main activities and not the single movements
- Naturally it loses in level of detail and therefore precision in the elaboration of the standard times MOST defines not a series of movements, but a sequence of events / activities that involve the movements
- The basic MOST events are:
- The sequence of movement of an object
- The control sequence of an object
- The sequence of use of tools and an object
- The sequence for the use of manual cranes

Activity-based (MOST)

- Alongside each sub-activity is the execution time, which derives (as in the other methods) from standardized tables according to different parameters (eg number of steps within the sub-activity)
- The time indicated in the index is $1 / 10$ of a standard TMU
- The standard time is obtained as TMU + allowance factor, where allowance factor = increase of the standard time for personal rest (P), fatigue (F), different delays (D)
- Usually the allowance factor is at least 15% of the standard time calculated with MOST

General move

- ABGABPA
- A \rightarrow action distance
- B \rightarrow body motion
- G \rightarrow gain control
- $\mathrm{P} \rightarrow$ placement

Fizure 3.1 Gamam $14 \ldots .$.

Action Distance			
Index Value	Steps	Feet	Meters
A_{24}	$11-15$	38	12
A_{32}	$16-20$	50	15
A_{42}	$21-26$	65	20
A_{54}	$27-33$	83	25
A_{67}	$34-40$	100	30
A_{81}	$41-49$	123	38
A_{96}	$50-57$	143	44
A_{113}	$58-67$	168	51
A_{131}	$68-78$	195	59
A_{152}	$79-90$	225	69
A_{173}	$91-102$	255	78
A_{196}	$103-115$	288	88
A_{220}	$116-128$	320	98
A_{245}	$129-142$	355	108
A_{270}	$143-158$	395	120
A_{300}	$159-174$	435	133
A_{330}	$175-191$	478	146

General move

represents the activity "Walk for three steps and take a bolt from the floor, lift it up and put it in a box",

A6 B6 G1 A1 B0 P3 A0

TMU $=(6+6+1+1+0+3+0) * 10=170 \mathrm{TMU}=0,102$ min Tempo standard $=0,102 \mathrm{~min} * 1,15=0,1173 \mathrm{~min}$ con allowance factor pari al 15%

Controlled move

- ABGMXIA

- A \rightarrow action distance
- B \rightarrow body motion
- $G \rightarrow$ gain control
- $\mathrm{M} \rightarrow$ Move controlled
- $X \rightarrow$ Process time
- I \rightarrow alignment

$\left\|\begin{array}{c} \text { Index } \\ \times 10 \end{array}\right\|$	M Move Controlled					Alignment	Index
	Push/Pull/Turn	Crank	Seconds	Minutes	Hours		
1	$\begin{aligned} & \leq 12 \text { in. }(30 \mathrm{~cm}) \\ & \text { Button } \\ & \text { Switch } \\ & \text { Knob } \\ & \hline \end{aligned}$. 5 Sec.	. 01 Min .	. 0001 Hr .	1 Point	1
3	$\begin{array}{\|l} >12 \mathrm{in} .(30 \mathrm{~cm}) \\ \text { Resistance } \\ \text { Seat or Unseat } \\ \text { High Control } \\ 2 \text { Stages } \leq 24 \mathrm{in} .(60 \mathrm{~cm}) \text { Total } \\ \hline \end{array}$	1 Rev.	1.5 Sec.	. 02 Min .	. 0004 Hr .	2 Points $\leq 4 \mathrm{in} .(10 \mathrm{~cm})$	3
6	$\begin{aligned} & 2 \text { Stages }>24 \text { in. }(60 \mathrm{~cm}) \text { Total } \\ & 1-2 \text { Steps } \end{aligned}$	2-3 Rev.	2.5 Sec.	. 04 Min .	. 0007 Hr .	2 Points $>4 \mathrm{in} .(10 \mathrm{~cm})$	6
10	$\begin{aligned} & 3-4 \text { Stages } \\ & 3-5 \text { Steps } \end{aligned}$	4-6 Rev.	4.5 Sec.	. 07 Min .	. 0012 Hr .		10
16	6-9 Steps	7-11 Rev.	7.0 Sec .	. 11 Min .	. 0019 Hr .	Precision	16

Figure 3.10 Controlled Move data card.

Index Value	Seconds	Minutes	Hours
x_{21}	3.5	. 18	. 0027
x_{32}	13.0	21	.0038
x^{12}	17.0	. 28	. 0047
X ${ }^{4}$	21.5	. 38	. 0080
x_{87}	28.0	. 44	. 0073
x_{01}	31.5	. 52	. 0088
x_{09}	37.0	. 82	. 0104
X_{113}	43.5	. 72	. 0121
χ_{131}	50.5	. 84	. 0141
X_{152}	58.0	. 37	. 0182
χ_{173}	88. 0	1.10	. 0184
X_{108}	74.5	1.24	. 0207
X_{220}	83.5	1.33	. 0232
x_{24}	32.5	1.54	. 0257
X_{270}	102.0	1.70	. 0284
X_{300}	113.0	1.88	. 0314
$\mathrm{X}_{3} 9$	124.0	2.08	. 0344

Controlled move

- indicates the activity of setting a control parameter on a machine (eg milling machine)

A1 B0 G1 M1 X10 I0 A0

Tool use

- ABGABP...ABPA

- A \rightarrow action distance
- B \rightarrow body motion
- $G \rightarrow$ gain control
- $\mathrm{P} \rightarrow$ placement
- ... \rightarrow F fasten, L loosen, C cut, S surface treat, M measure, R record, T think

$\begin{aligned} & \text { nder } \\ & \times 10 \end{aligned}$	F L L Loosten											mov
	Finger Action	Wrist Action				Arm Action					$\begin{aligned} & \text { Fower } \\ & \text { Towt } \end{aligned}$	
	Spins	Turns	Strokes	Cranks	Taps	Turns		Strokes	Cranks	Strikes	Screw Diam	
	Fingers. Screwdriver	Hand, Screwdriver. Ratchet T.Wrench	Wrench	Wrench. Ratchet	Hand. Hammer	Rathet	T.Wrench.	Wrench	Wrenth Ratishet	Hammer	A wer Wiputh	
1	1	-	-	-	1	\bullet	-	-	-	-	-	1
3	2	1	1	1	3	1	\bullet	1	-	1	$1 / 4$ in (6 mm)	3
6	3	3	2	3	6	2	1	-	1	3	$\begin{gathered} 1 \mathrm{mn} . \\ (25 \mathrm{~mm}) \end{gathered}$	6
10	8	5	3	5	10	4	-	2	2	5		10
16	16	9	5	8	16	6	3	3	3	8		16
24	25	13	8	11	23	9	6	4	5	12		24
32	35	17	10	15	30	12	8	6	6	16		32
42	47	23	13	20	39	15	11	8	8	21		42
54	61	29	17	25	50	20	15	10	11	27		54

BasicMOST: Systemi					fioclibises							Think			$\begin{array}{\|l\|l\|l} 1 \\ \times 10 \\ \times 10 \end{array}$
$\left\|\begin{array}{c} \text { index } \\ \times 10 \end{array}\right\|$	$\underset{C}{C}$				$\begin{gathered} \text { S } \\ \text { Surface Treat } \end{gathered}$			M Measure	R Record						
	Cutoff	Secure	Cut	Slice	$\begin{array}{\|c\|} \hline \text { Air- } \\ \text { Clean } \\ \hline \end{array}$	BrushClean	Wipe	Measure		rite	Mark	Inspect	Read		
	Piers		Scissors	Knife	Nozze	Brush	Cloth	Measuring Tool	Penc	VPen	Marker	$\begin{aligned} & \text { Ess } \\ & \text { Fingers } \end{aligned}$			
	Wre		Cuts	Slices	$\begin{gathered} \text { sq. } \frac{1}{2} \\ \left(0.1 \mathrm{~m}^{2}\right. \end{gathered}$	$\left.\begin{array}{c} \text { so. } \cdot \frac{1}{2} \\ \left(0.1 \mathrm{~m}^{2}\right. \end{array}\right)$	$\left(\begin{array}{c} \text { sq. t. } \\ \left(0.1 \mathrm{~m}^{2}\right) \end{array}\right.$		Digits	Words	Digits	Points	Digits. Single Words	Text of Words	
1		Grip	1	-	-	-	-		1	-	Check Mark	1	1	3	1
3 sot	Sot		2	1	.	-	1/2		2	-	$\begin{array}{\|c\|} \hline 1 \\ \hline \text { Scribe } \\ \text { Line } \\ \hline \end{array}$	3	Gauge		3
6	Medum	$\begin{aligned} & \text { Twist } \\ & \text { Form Loop } \end{aligned}$	4	-	$\begin{gathered} 1 \\ \text { spot } \\ \text { Cavity } \end{gathered}$	1	-		4	1	2		6 Scale Date	$\begin{array}{r} 15 \\ \text { Valve } \\ \text { Time } \\ \hline \end{array}$	6
10	Fiand		7	3	.	-	1	Profile Gauge	6	-	3	9 Feel for Delect	12 Vemier		10
16		Secure Cotter Pin	11	4	3	2	2	Fixed Scale Caliper ≤ 12 in. $(30 \mathrm{~cm})$	$\begin{gathered} 9 \\ \text { Signa } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 2 \\ \text { ture or } \\ \text { ale } \end{array}$	5	14	Table	$\begin{aligned} & 38 \\ & \text { alve } \end{aligned}$	16
24			15	6	4	3	-	Feeler Gauge	13	3	7	19		54	24
32			20	9	7	5	5	Steel Tape ≤ 6 ft. (2 m) Depth Micrometer	18	4	10	26		72	32
42	2		27	11	10	7	7	$\begin{aligned} & \text { 00-Micrometer } \\ & =4 \mathrm{in} .(10 \mathrm{~cm}) \\ & \hline \end{aligned}$	23	5	13	34		94	42
54	5		33					$\begin{aligned} & \text { 10-Micrometer } \\ & \leq 4 \mathrm{in} .(10 \mathrm{~cm}) \\ & \hline \end{aligned}$	29	7	16	42		119	54

Manual crane model

- ATKFVLVPTA

- A \rightarrow distanza percorsa
- T \rightarrow trasport unloaded
- K \rightarrow Hook-Unhook
- $F \rightarrow$ Free
- $V \rightarrow$ Vertical move
- L \rightarrow Loaded move
- $\mathrm{P} \rightarrow$ Placement

A	T	K	F	V	L	V	P	T	A
Walk to crane	Transport empty crane to object	Hook up and unhook object	Free object	Vertical move (up)	Transport loaded crane	Vertical move (down)	Place object	Transport empty crane (aside)	Walk to workplace (return)

Figure 3.55 Illustration of Manual Crane Sequence Model.

$\begin{gathered} \text { Index } \\ \times 10 \end{gathered}$	Basichoshtsystemy						
							(index
	Transportation up to 2 Tons		Unhook				
	Unloaded	Loaded			Inches (cm)		
	Feet (m)						
3				Without Direction Change	8 (20)	Without Direction Change	3
6				With Single Direction Change	16 (40)	Align with One Hand	6
10	5 (1.5)	5 (1.5)		With Double Direction Change	30 (75)	Align with Two Hands	10
16	13 (4)	12 (3.5)		With One or More Direction Changes, Care in Handling or Apply Pressure	45 (115)	Align and Place with One Adjustment	16
24	20 (6)	18 (5.5)	Single or Double Hook		60 (150)	Align and Place with Several Adjustments	24
32	30 (9)	26 (8)	Sling			Align and Place with Several Adjustments and Apply Pressure	32
42	40 (12)	35 (10)			.		42
54	50 (15)	45 (13)					54

Figure 3.56 Manual Crane data card. Values are read up to and including. Transportation times for the \mathbf{T} and \mathbf{L} parameters must be validated before application of the Manual Crane Sequence Model.

Activity-based (MOST)

TEMPI STANDARD LAVORAZIONI ELETTRICHE

NOTA: ") attivita di setup da dividere per i in" di cavi componentil foperazione

Advantages

- The standard times can be accurately evaluated (differently depending on the MTM family) before production starts
- You can compare without making more alternatives on the work cycles
- The possibilities of error in the recording of times and performances are theoretically reduced
- It is easier to apply and cheaper than Time Study systems. They are usually more easily accepted by trade union

Disadvantages

- It is practically inapplicable if the activities are not very repetitive
- In the application of more detailed families (eg MTM 1) the division of labor into micro-operations can be very difficult
- The parameters chosen for the timing determination may not be suitable for any work situation
- Factors that could introduce variability in execution times are potentially unlimited, therefore not all are included in the tables (eg MTM 1 does not consider the shape of the pieces to be moved)

Example

- ABGABPA
- ABGMXIA
- ABGABP... ABPA

2

Learning curve

Definizione

The learning curve (or progress curve or learning curve) is a tool used to design (or reorganize) production systems in consideration of variations that occur over time as a result of the learning phenomenon.
'The productive efficiency of each activity increases continuously by repeating this activity’

A concept that, translated into appropriate mathematical models, makes it possible to forecast with reasonable accuracy the variation in time of learning-related quantities (and progress) such as the unit cost of the product, the time needed to build it, the maintenance hours necessary, etc.

Learning

Learning is the sum of:

Discrete factors: they cause a practically instantaneous and easily perceived variation of the observed quantity

- Inventions
- Discoveries
- applications., widespread and in short time, of innovative technologies

Continuous improvements: non-perceptible events, if the observation is superficial, due to the areas

- design
- technological / technical
- organization / management

Continuous improvements

Project area

- documentation on the state of the art
- product design
- better definition of operating methods

Technological / technical area

- automation
- Application of alternative technologies
- Procedures optimization

More appropriate choices of tools

- Management organizational area
- Organization of departments
level of training
Production control
- Employment of labor
- Use of materials
- Use of energy

Continuous improvements

In order to continuously improve it is still necessary to create ideal conditions in the company. In fact, learning depends on:

Attitude / ability to learn

- Physical adaptability
- Cultural degree
- Grounds

Characteristics of the work to be done

- complexity
- Length of cycle times

Boundary conditions

- External motivations

Changes in situations

- Conditions related to work

Wright Model (1936)

$$
y=a * x^{-b}
$$

$\mathbf{y}=$ measure of productivity (eg: unit cycle time, unit cost, unit weight)
$\mathbf{a}=$ parameter linked to the measure of productivity or productivity at the initial time (e.g.: first piece)
$\mathbf{x}=$ cumulated volume of production
$\mathbf{b}=$ learning rate or margin of productivity margin

Wright model

		Curva di esperienza						
	100	I						
	98	,						
	96							
	94							
	92							
	90							
	88							
		10	100	1000	10000	100000	1000000	
	Produzione cumulata di beni							

Wright model

- The variation in productivity is normally expressed in percentage terms which obviously corresponds to a precise numerical value of the parameter b

```
Productivity variation % Learning curve(b)
\begin{tabular}{ll}
55 & 0,8292 \\
60 & 0,7372 \\
70 & 0,514 \\
80 & 0,322 \\
90 & 0,152 \\
95 & 0,074
\end{tabular}
```


Wright model

- How to define the parameters a and b
- Cochran
- Williams
- Baloff
- Westinghouse

Wright model

- Determination of the values of parameters a and b
- Cochran method:
a) Determine the value of steady-state productivity (eg: standard productivity after n productions)
b) Estimate the percentages of improvement of each of the activities in which the production is divided
c) Assign a weight to each activity to arrive at a weighting average improvement rate
d) Starting from the regime productivity and thus having estimated the rate of improvement, determine the initial productivity a

Wright model

- Determination of the values of parameters a and b
- Williams method:
a) Examination of curves for similar productions and confirmed in practice
b) The curve considered most suitable among the examined is taken into consideration, assuming its rate of improvement b
c) The productivity of the second production is measured by calculating the initial productivity a

Wright model

- Baloff method:
- A correlation between the rate of improvement band productivity y is considered
- Westinghouse method:
a) Like Williams, it takes a characteristic curve to determine the rate of improvement b and productivity y
b) Like Cochran, he estimates steady-state productivity and the amount of production to achieve it to determine initial productivity a

Determination of the values of parameters a and b

- By increasing the cumulative production, as a result of learning rates related to the various operations, it could generate imbalances between the stations of the line. To avoid this problem and rebalance the lines, one can take a cue from what Dar-El and Rubinovitz suggested

Determination of the values of parameters a and b

- Dar-El and Rubinovitz method
- Using fairly simple criteria, the operations are divided into two categories
- Phases characterized mainly by intellectual learning. These phases are further distinguished between phases of high and low intellectual learning, respectively with improvement rates b between 70% and 75% and rates between 75% and 80%
- Stages characterized mainly by acquisition of manual skills. These phases are further distinguished between phases of high and low acquisition of manual skill, respectively with b improvement rates between 80% and 85% and rates between 85% and 90%
- The weighted curve to be used is determined
- By means of an algorithm that takes into account the different regressions, the redefinition of the production lines is achieved as a function of the increase in the cumulative production

Determination of the values of parameters a and b

- To take into account the fact that production can be suspended for a certain period of time and then resumed, typical of batch production, it is necessary to consider the possibility of forgetting, the forgetting factor. In general terms the forgetting factor depends mainly on the time interval between the production of a batch and the next and the complexity of the operations.
- Towill exemplified what can happen when the forgetting factor changes.

Determinazione dei valori dei parametri a e b

- Towill analysis
a) A certain quantity of identical parts is considered to be produced in n lots of equal sizes interspersed with equal times
b) The size of the lots is varied
c) The value of the forgetting factor expressed in percentage terms is changed
d) The result is analyzed according to the total time necessary for the production of the whole quantity assumed.

Towill

Towill

Towill

Other model

- Curves to S

- The canonical S curve provides:
- a first slow learning phase
- a second fast learning phase
- a third slow-learning phase tending to an asymptote
- The variants to the canonical model are the:
- multi-stage S-curves
- asymmetrical S curves

