# Real Exchange Rate and Prices

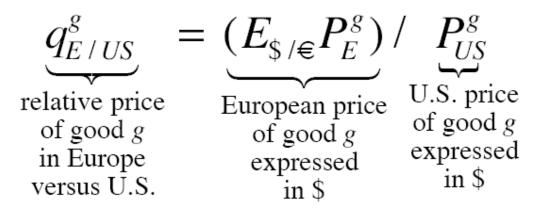
Rodolfo Helg, February 2019 adapted from Feenstra Taylor

#### Introduction to Exchange Rates and Prices

Consider some hypothetical data on prices and exchange rates in the U.S. and U.K.:

- Prices of U.S. and U.K. CPI baskets
  - 1970 P<sub>UK</sub>=£100 1990 P<sub>UK</sub>=£110
  - 1970 P<sub>US</sub>=\$175 1990 P<sub>US</sub>=\$175
- Exchange rates (£/\$)
  - 1970  $E_{f_{f}}=0.57$  1990  $E_{f_{f}}=0.63$
- Prices of baskets in common currency (U.S. \$)
  - UK 1970 \$175 (= £100/ 0.57) 1990 \$175 (= £110/ 0.63)
  - US \$175 in both years
- Relative purchasing power of the two currencies has remained the same
- Is it coincidence that the exchange rate and price levels adjusted in this way?

#### Introduction to Exchange Rates and Prices


- The ideas of arbitrage
  - CIP and UIP: applied there to currencies and interest rates
  - LOOP and PPP: applied here to the goods market
- The prices of goods and services in different countries are related to the exchange rate.
  - When the relative prices of goods changes, the exchange rate adjusts to reflect this change (but this may take time).
- The monetary approach to exchange rates is the result.
  - A long run theory linking money, exchange rates, prices, and interest rates.
- The foundation of this theory is the fundamental arbitrage principle known as the *law of one price*.

### The Law of One Price

- Key assumption frictionless trade
  - No transaction costs
  - No barriers to trade
  - Identical goods in each location
  - No barriers to price adjustment
- General idea:
  - Prices must be equal in all locations for any good when expressed in a common currency.
  - Otherwise, there would be a profit opportunity from buying low and selling high.

### The Law of One Price

- Consider a single good, g, in 2 different markets.
- The **law of one price** (LOOP) states that the price of the good in each market must be the same.
- This is a microeconomic concept, applied to a single good, g.
- Relative price ratio for g:



### The Law of One Price

• If LOOP holds then (for each good g):  $q_{E/US}^{g} = 1 \quad \leftrightarrow \quad E_{\$/e}P_{E}^{g} = P_{US}^{g}$ 

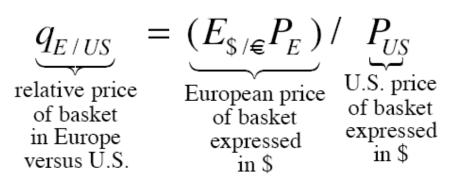
This means the price of good g is the same in Europe and in the U.S.

 $q_{E/US}^g > 1 \qquad \longleftrightarrow \qquad E_{\$/ \in} P_E^g > P_{US}^g$  • What is LOOP doesn those  $\epsilon$ 

Goods less expensive in U.S.

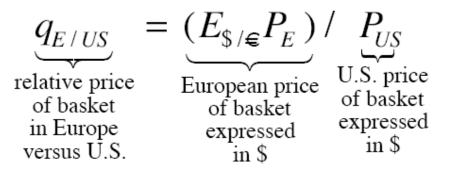
$$q^g_{E/US} < 1 \qquad \longleftrightarrow \qquad E_{\$/\in} P^g_E < P^g_{US}$$

Goods less expensive in Europe


### Purchasing Power Parity

- Macroeconomic counterpart to LOOP.
  - If LOOP holds for every good in CPI basket, then the prices of the entire baskets must be the same in each locations.
- The **purchasing power parity (PPP)** theory states that these overall price levels in each market must be the same.
- Relative price level ratio:

$$\underbrace{q_{E/US}}_{\text{relative price of basket in Europe versus U.S.}} = \underbrace{\left( \frac{E_{\$/\$} P_E}{E_{\$}} \right) / \underbrace{P_{US}}_{U.S. \text{ price of basket expressed in \$}}$$


### The Real Exchange Rate

• The relative price level ratio q is an important concept. It is called the **real exchange rate** 



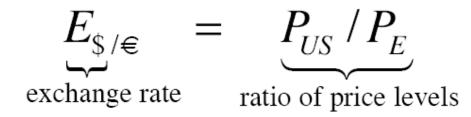
- Remember the key difference to avoid confusion.
  - Nominal exchange rate E is the ratio at which currencies trade.
  - Real exchange rate q is ratio at which goods baskets trade.
- However, the real exchange rate has some terminology in common with the nominal exchange rate...

### Real Appreciation and Depreciation



- Changes in the real exchange rate (from the US point of view):
  - If the real exchange rate rises
    - more home goods needed in exchange for foreign goods
    - intuitively called a real depreciation.
  - If the real exchange rate falls
    - fewer home goods needed in exchange for foreign goods
    - Intuitively called a real appreciation.

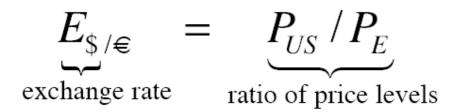
#### **Overvaluation and Undervaluation**


• Absolute PPP holds if and only if the real exchange rate equals 1:

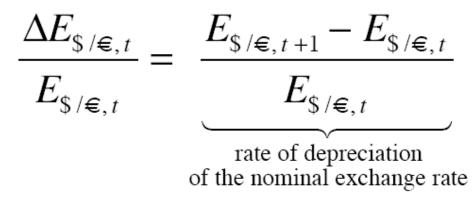
$$E_{\$/\in}P_E = P_{US}$$
, or  $q_{E/US} = 1$ .

- What if absolute PPP does not hold? (US perspective)
  - If the real exchange rate is above one (by x%)
    - foreign (European) goods are relatively expensive
    - foreign currency (euro) is said to be **overvalued** (by x %).
      - why? euros are x% dearer than they would have to be to satisfy PPP.
  - If the real exchange rate is below one (by x%)
    - foreign (European) goods are relatively cheap
    - foreign currency (euro) is said to be **undervalued** (by *x*%).
      - why? euros are x% cheaper than they would have to be to satisfy PPP.

Absolute PPP, Prices, and the Nominal Exchange Rate


- We can now see that PPP supplies a reference level for the exchange rate.
  - Rearrange the PPP equation:




- PPP implies that the exchange rate at which two currencies trade is equal to the relative price levels of the two countries.
- PPP theory can be used to predict exchange rate movements these simply reflect relative prices, so all we need to do is predict prices.

#### Relative PPP, Inflation, and Exchange Rate Depreciation

• The absolute PPP equation:



- If this is true in *levels* of exchange rates and prices, then it is also true in *rates of change*.
  - The rate of change in the exchange rate is the rate of depreciation in the home currency (U.S. \$):



#### Relative PPP, Inflation, and Exchange Rate Depreciation

 The rate of change in relative prices (P<sub>US</sub>/P<sub>E</sub>) is the homeforeign inflation differential:

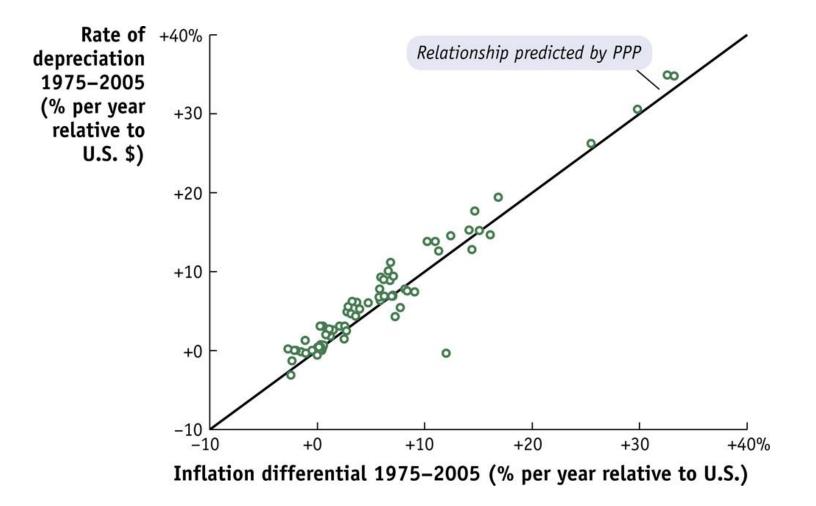
$$\frac{\Delta P_{US,t}}{P_{US,t}} - \frac{\Delta P_{E,t}}{P_{E,t}} = \underbrace{\begin{pmatrix} P_{US,t+1} - P_{US,t} \\ P_{US,t} \end{pmatrix}}_{\text{rate of inflation in U.S.}} - \underbrace{\begin{pmatrix} P_{E,t+1} - P_{E,t} \\ P_{E,t} \end{pmatrix}}_{\text{rate of inflation in Europe}}$$

• Result is **Relative PPP**:

$$\frac{\Delta E_{\$/\in,t}}{\underbrace{E_{\$/\in,t}}}_{\text{rate of depreciation}}} = \underbrace{\pi_{US,t} - \pi_{E,t}}_{\text{inflation differential}}$$

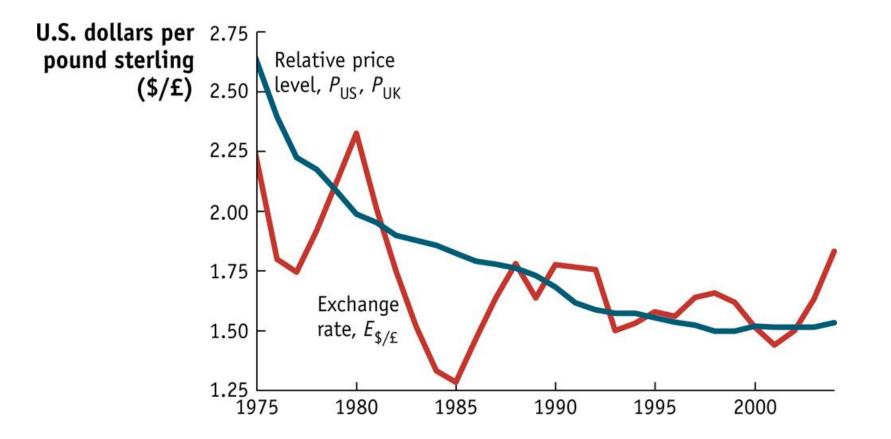
 Relative PPP implies that the rate or depreciation of the nominal exchange rate exchange rate equals the inflation differential.

#### Relative PPP, Inflation, and Exchange Rate Depreciation


- Relative PPP is derived from Absolute PPP
  - If Absolute PPP holds then Relative PPP must hold also.
- But the converse need not be true: one could imagine a case where a basket always costs a fixed amount more, say, 10% in common currency terms in one country than the other:
  - In this case Absolute PPP fails, but Relative PPP holds.

#### Where Are We Now?

- The PPP theory, whether in absolute or relative form, suggests that price levels in different countries and exchange rates are tightly linked, either in levels or in rates of change.
- Stop and ask some questions:
  - Where do price levels come from?
  - Do the data support the theory of purchasing power parity?


#### **Empirical Evidence on PPP**

• According to relative PPP, the percentage change in the exchange rate should equal the inflation differential.



#### **Empirical Evidence on PPP**

 According to absolute PPP, relative prices should converge over time.



#### How Slow is Convergence to PPP?

- Two measures:
  - <u>Speed of convergence</u>: how quickly deviations from PPP disappear over time (estimated to be 15% per year).
  - <u>Half-life</u>: how long it takes for half of the deviations from PPP to disappear (estimated to be about four years).
- These estimates are useful for forecasting how long exchange rate adjustments will take.

#### Forecasting Real Exchange Rates

- If a currency is undervalued or overvalued, then the real exchange rate is not equal to one at all times.
  - We can allow for this by letting q change in the formulas we have derived.
  - From the definition of q:

$$\frac{\Delta E_{\$/\pounds,t}}{E_{\$/\pounds,t}} = \frac{\Delta q_{E/US,t}}{q_{E/US,t}} + \left(\pi_{US,t} - \pi_{E,t}\right)$$

#### Forecasting Real Exchange Rates

$$\frac{\Delta E_{\$/\pounds,t}}{E_{\$/\pounds,t}} = \frac{\Delta q_{E/US,t}}{q_{E/US,t}} + \left(\pi_{US,t} - \pi_{E,t}\right)$$

- If q=1 is constant (PPP) then the 1<sup>st</sup> term on the right is zero.
  - To forecast the change in E you just need to forecast the inflation differential, as before.
- If q deviates from 1, and we can measure it, then we can use the convergence speed to estimate how quickly q will rise/fall towards 1.
  - This estimate of the rate of change of q can then be factored in, in addition to the inflation differential, to allow for an estimate of nominal depreciation.

#### Forecasting Real Exchange Rates

$$\frac{\Delta E_{\$/\pounds,t}}{E_{\$/\pounds,t}} = \frac{\Delta q_{E/US,t}}{q_{E/US,t}} + \left(\pi_{US,t} - \pi_{E,t}\right)$$

- Example
  - You find that US inflation is 3%, Eurozone inflation is 2%.
  - Based on the inflation differential you predict a 1% rate of depreciation of the US dollar, or E to rise by 1%.
  - Then you also discover that the US dollar is 10% overvalued against the euro (q=0.90), relative to a PPP value of 1.
  - You expect 15% of that deviation of -0.1 to vanish in one year, so you expect q to rise (real depreciation) by 1.5%.
  - Adding the inflation differential, you now expect E to rise by 2.5%.

#### What Explains Deviations from PPP?

- Transaction costs
  - Recent estimates suggest transportation costs may add about 20% to the cost of goods moving internationally.
  - Tariffs (and other policy barriers) may add another 10%, with variation across goods and across countries.
  - Further costs arise due to the time taken to ship goods.
- Nontraded goods
  - Some goods are inherently nontradable;
  - Most goods fall somewhere in between freely tradable and purely nontradable.
    - For example: a cup of coffee in a café. It includes some highly-traded components (coffee beans, sugar) and some nontraded components (the labor input of the barista).

#### What Explains Deviations from PPP?

- Imperfect competition and legal obstacles
  - Many goods are differentiated products, often with brand names, copyrights, and legal protection.
  - Firms can engage in price discrimination across countries, using legal protection to prevent arbitrage
    - E.g., if you try to import large quantities of a pharmaceuticals, and resell them, you may hear from the firm's lawyers.
- Price stickiness
  - One of the most common assumptions of macroeconomics is that prices are "sticky" prices in the short run.
  - PPP assumes that arbitrage can force prices to adjust, but adjustment will be slowed down by price stickiness.

#### The Big Mac Index

- For over 20 years *The Economist* newspaper has used PPP to evaluate whether currencies are undervalued or overvalued.
  - Recall, home currency is x% overvalued/undervalued when the home basket costs x% more/less than the foreign basket.
- The test is really based on Law of One Price because it relies on a basket with one good.
  - Invented (1986) by economics editor Pam Woodall. She asked correspondents around the world to visit McDonalds and get prices of a Big Mac, then compute price relative to the U.S.

#### The Big Mac Index

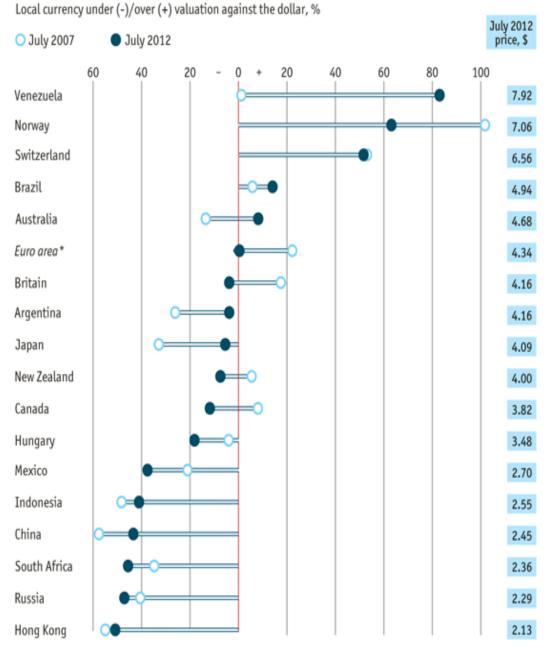
"Big Mac index" = 
$$q^{\text{Big Mac}} - 1 = \frac{E_{\text{s/local currency}} P_{\text{local}}^{\text{Big Mac}}}{P_{\text{US}}^{\text{Big Mac}}} - 1$$

- The % deviation (+/-) from the US price measures the over/under valuation of the local currency based on the burger basket.
- Updated every year:

http://www.economist.com/content/big-mac-index

• In 2004 they tried the same exercise with another global, uniform product: the Starbucks tall latte.

|                | Big Mac prices*   |            | Implied PPP <sup>†</sup> | Actual dollar<br>exchange rate | Under(-)/over(+)<br>valuation against |
|----------------|-------------------|------------|--------------------------|--------------------------------|---------------------------------------|
|                | in local currency | in dollars | of the dollar            | July 21st                      | the dollar, %                         |
| United States‡ | \$ 3.73           | 3.73       |                          |                                |                                       |
| Argentina      | Peso 14.0         | 3.56       | 3.75                     | 3.93                           | -5                                    |
| Australia      | A\$ 4.35          | 3.84       | 1.17                     | 1.13                           | 3                                     |
| Brazil         | Real 8.71         | 4.91       | 2.33                     | 1.77                           | 31                                    |
| Britain        | £ 2.29            | 3.48       | 1.63 §                   | 1.52§                          | -7                                    |
| Canada         | C\$ 4.17          | 4.00       | 1.12                     | 1.04                           |                                       |
| Chile          | Peso 1,750        | 3.34       | 469                      | 524                            | -10                                   |
| China          | Yuan 13.2         | 1.95       | 3.54                     | 6.78                           | -10                                   |
| Colombia       | Peso 8,200        | 4.39       | 2,196                    | 1,868                          | -48                                   |
|                |                   |            |                          |                                |                                       |
| Costa Rica     | Colones 2,000     | 3.83       | 536                      | 522                            | 3                                     |
| Czech Republic | Koruna 67.6       | 3.43       | 18.1                     | 19.7                           | -8                                    |
| Denmark        | DK 28.5           | 4.90       | 7.63                     | 5.81                           | 31                                    |
| Egypt          | Pound 13.0        | 2.28       | 3.48                     | 5.70                           | -39                                   |
| Estonia        | Kroon 32.0        | 2.62       | 8.57                     | 12.2                           | -30                                   |
| Euro area**    | € 3.38            | 4.33       | 1.10††                   | 1.28 ††                        | 16                                    |
| Hong Kong      | HK\$ 14.8         | 1.90       | 3.96                     | 7.77                           | -49                                   |
| Hungary        | Forint 740        | 3.33       | 198                      | 222                            | -11                                   |
| Indonesia      | Rupiah 22,780     | 2.51       | 6,102                    | 9,063                          | -33                                   |
| Israel         | Shekel 14.9       | 3.86       | 3.99                     | 3.86                           | 3                                     |
| Japan          | ¥ 320             | 3.67       | 85.7                     | 87.2                           | -2                                    |
| Latvia         | Lats 1.55         | 2.80       | 0.42                     | 0.55                           | -25                                   |
| Lithuania      | Litas 7.30        | 2.71       | 1.96                     | 2.69                           | -27                                   |
| Malaysia       | Ringgit 7.05      | 2.19       | 1.89                     | 3.21                           | -41                                   |
| Mexico         | Peso 32.0         | 2.50       | 8.57                     | 12.8                           | -33                                   |
| New Zealand    | NZ\$ 5.00         | 3.59       | 1.34                     | 1.39                           | -4                                    |
| Norway         | Kroner 45.0       | 7.20       | 12.1                     | 6.25                           | 93                                    |
| Pakistan       | Rupee 210         | 2.46       | 56.3                     | 85.5                           | -34                                   |
| Peru           | Sol 10.0          | 3.54       | 2.68                     | 2.83                           | -5                                    |
| Philippines    | Peso 102          | 2.19       | 27.3                     | 46.5                           | -41                                   |
| Poland         | Zloty 8.30        | 2.60       | 2.22                     | 3.20                           | -30                                   |
| Russia         | Rouble 71.0       | 2.33       | 19.0                     | 30.4                           | -38                                   |
| Saudi Arabia   | Riyal 10.0        | 2.67       | 2.68                     | 3.75                           | -29                                   |
| Singapore      | S\$ 4.23          | 3.08       | 1.13                     | 1.37                           | -18                                   |
| South Africa   | Rand 18.5         | 2.45       | 4.94                     | 7.54                           | -18<br>-34                            |
| South Korea    | *****             | 2.45       | 911                      | 1.204                          |                                       |
|                | Won 3,400         |            |                          |                                | -24                                   |
| Sri Lanka      | Rupee 210         | 1.86       | 56.3                     | 113                            | -50                                   |
| Sweden         | SKr 48.4          | 6.56       | 13.0                     | 7.37                           | 76                                    |
| Switzerland    | SFr 6.50          | 6.19       | 1.74                     | 1.05                           | 66                                    |
| Taiwan         | NT\$ 75.0         | 2.34       | 20.1                     | 32.1                           | -37                                   |
| Thailand       | Baht 70.0         | 2.17       | 18.8                     | 32.3                           | -42                                   |
| Turkey         | Lira 5.95         | 3.89       | 1.59                     | 1.53                           |                                       |
| UAE            | Dirhams 11.0      | 2.99       | 2.95                     | 3.67                           | -20                                   |
| Ukraine        | Hryvnia 14.5      | 1.84       | 3.88                     | 7.90                           | -51                                   |
| Uruguay        | Peso 79.0         | 3.74       | 21.2                     | 21.1                           | nil                                   |


#### Big Mac index (based on market exchange rate: 21 July 2010)

divided by price in United States \$Average of Atlanta, Chicago, New York and San Francisco SDollars per pound \*\*Weighted average of prices in euro area ttDollars per euro

Sources: McDonald's; The Economist

The Big Mac index

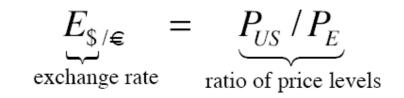
### **Big Mac index** (based on market exchange rate: July 2012)



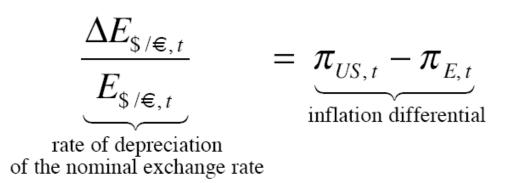
Sources: McDonald's; The Economist

**Big Mac index** 

\*Weighted average of member countries


### The Big Mac Index




|             | llar, %, using:<br>Starbucks McDonald's |     |  |
|-------------|-----------------------------------------|-----|--|
|             | tall-latte index                        |     |  |
| Australia   | -4                                      | -17 |  |
| Britain     | +17                                     | +23 |  |
| Canada      | -16                                     | -16 |  |
| China       | -1                                      | -56 |  |
| Euro area   | +33                                     | +24 |  |
| Hong Kong   | +15                                     | -45 |  |
| Japan       | +13                                     | -12 |  |
| Malaysia    | -25                                     | -53 |  |
| Mexico      | -15                                     | -21 |  |
| New Zealand | -12                                     | -4  |  |
| Singapore   | +2                                      | -31 |  |
| South Korea | +6                                      | 0   |  |
| Switzerland | +62                                     | +82 |  |
| Taiwan      | -5                                      | -21 |  |
| Thailand    | -31                                     | -46 |  |
| Turkey      | +6                                      | +5  |  |



## PPP as a Theory of the Exchange Rate In levels we have Absolute PPP:



• In rates of change we have Relative PPP



• Now we need to ask: where do the price levels (and inflation rates) come from?

#### Case study:

#### How to measure country competitiveness

- The Real Effective Exchange Rate
- The rate of growth of per capita income
- Synthetic indices (es. WEF Global Competitiveness Index)

At the **firm level**, for a product we can distinguish:

-price competitiveness: this is determined by production costs, the profit margin and the exchange rate

-<u>non-price competitiveness</u>: this involves design of product, quality, post-sale services etc.

At the <u>country level</u> there is an analogy for price competitiveness. This can be thought as a measure of average price competitiveness of the domestically produced products.

As a consequence, this measure gives a summary view of the average price competitiveness of a country's products

(ATTENTION: <u>it is not</u> a measure of country competitiveness in the Mercantilist meaning)

The name of this measure for the bilateral case is: Real Exchange Rate (RER):

#### RER = (P/P\*)×E

where: P = domestic price level;  $P^*=\text{foreign price}$ level; E = nominal exchange rate (price of domestic currency in units of foreign currency).

(note the link between RER and Purchasing Power Parity Law)

A more utilized measure takes into account the average price competitiveness of a country products with respect to a large number of countries. It is the Real Effective Exchange Rate (REER):

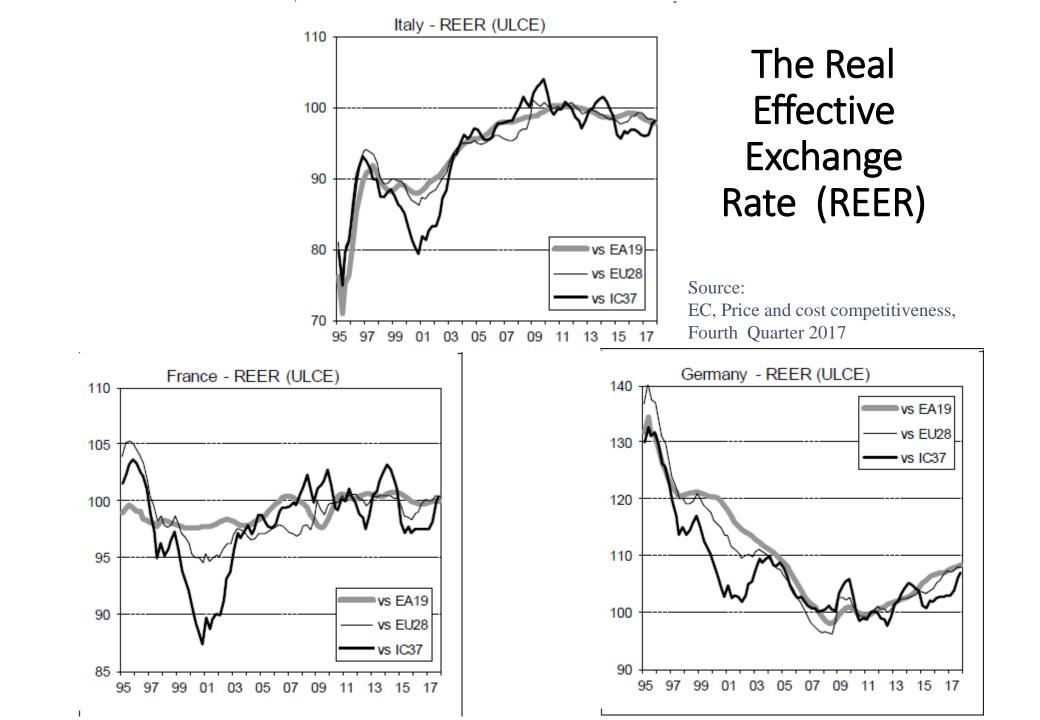
#### **REER = weighted average of bilateral RER**

Where the weights take into account the relevance of a country as an export mkt and/or import mkt for the country of reference.

Computation of REER can be different due to:

- Number of trading partner countries
- Weighting scheme adopted: simple or double weighting
- Aggregator: usually arithmetic or geometric weighted average
- Type of price adopted: GDP deflator, consumer prices, producer prices, unit labour costs

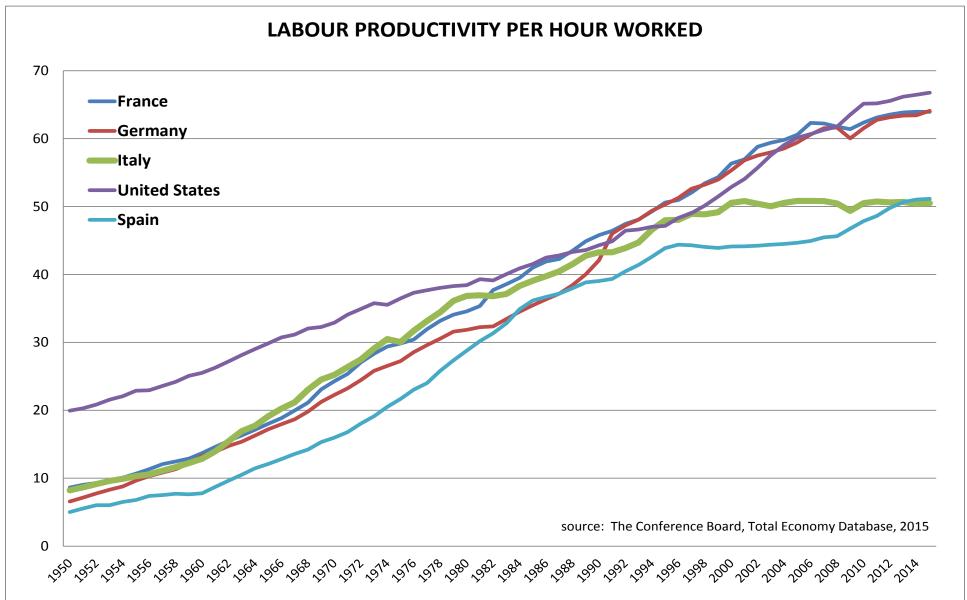
[memo:


ULC = cost of labour per unit of output produced = (W/LP), where W = total labour compensation per hour worked; LP = labour productivity]

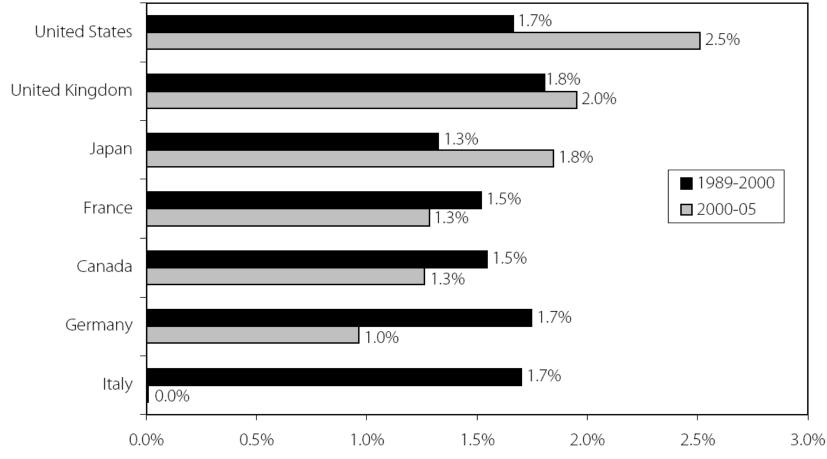
An application:

Italian products have lost considerably price competitiveness in the last 10 years. Is this loss due to the introduction of the Euro?

Analysis: let's utilise the Italian REER based on unit labour costs in the manufacturing sector compared to that other leading European countries


(source: Price and Competitiveness, EU Commission).




Both France and Germany experience a much better evolution.

memo: the REER utilized is based on Unit Labour Cost which depends on labour compensation (+) and on labour productivity (-)

The dynamics of the euro is not the major explanation of the worsening price competitiveness of Italian goods. During this period total labour compensation in Italy had a moderate evolution. On the contrary, a sharp deceleration of labour productivity growth has taken place in Italy.



#### FIGURE 8B Productivity growth rates in G-7 countries



Source: Authors' analysis of OECD (2003a and 2005b) data.