

Innovazione e sviluppo del prodotto Il settore farmaceutico (2)

Paolo Barbanti Ph.D., MBA

pbarbanti@liuc.it

Paolo Barbanti Innovazione e sviluppo del prodotto

Key trends in healthcare

Five trends are transforming our ecosystem

- Spiraling R&D costs coupled with decreased productivity
- Demand for safety and post-marketing surveillance
- Expectation of personalized medicine
- Reimbursement driven by medical and economic outcomes
- Proliferation and redistribution of healthcare outcomes information

Traditional Drug Development Process

Drug development

- Currently takes more than 11 years and requires an investment of over \$2.5 Bln to bring a single innovative drug to market
- Clinical investigation, premarket application, and postmarket stages are heavily regulated in most developed countries
- Ongoing concern about ability of the drug development enterprise to translate innovative science and bring needed therapies to market
- Ongoing concern about the ability, and willingness, of societies to pay for novel therapies

The Pharmaceutical industry response

Industry Challenges

- Slow progression of pipeline
- Rising R&D costs.
- Unacceptable attrition rates in clinical drug
- Key patents have expired (the patent cliff)
- Downward pressure from payers on the price of medicines
- Challenges in the global economy development.
- Intense focus on new business models to decrease costs and increase efficiency in R & D
- Calls for greater collaboration amongst all stakeholders (industry, academia, regulators, payers)

These companies have not been delivering enough return on R&D investment (new medicines reaching the market) to satisfy the demands of the financial markets

Less venture capital available for 'discovery-end' biotech

FDA NME Approvals

- Basically stable output over long term (vs increased investment in basic research and R&D)
- Decline from late 1990s reflects primarily decrease in submission of "me-too" drugs: now difficult to get on formulary
- FDA seeing increased novelty in applications over recent 5 year period; more "game-changing" therapies
- Possibly reflects adjustment of industry strategies

The process of discovery

Source: FBA Council Congressional Briefing Series, "Molecules to Miracles," 1997.

Will new scientific discoveries revolutionize treatment of disease ?

- Advances in both science and technology are providing unprecedented opportunities for new approaches to disease prevention, diagnosis and treatment
- However, in some senses, the barriers to successful development have never been higher
 - New paradigms for evaluation of diagnostic and therapeutic interventions must be developed
 - Faster

- More efficient
- But equally or more informative

No one is capable of adequately covering all the phases of drug discovery

The product development value chain **Proof of** Laboratory **Real World Product Product Discovery** Concept **Scale-up** Market Concept Validation Validation Designed Validated Preclinical Phase II/III 0 О Manufacturing / **Basic Science** Phase I Ο O \cap С **Regulatory** Academia, No profit **Large Corporations Start-ups**

Pharmaceutical Services

Paolo Barbanti

Drug discovery and critical partners

Paolo Barbanti Innovazione e sviluppo del prodotto

No "one size fits all" drug Most drugs work for 30% to 70% of patients Multiple factors determine drug responses Phamacogenetics is essential for individualized therapy

Paolo Barbanti

Paolo Barbanti Innovazione e sviluppo del prodotto

Population of patients with given disease

b Ideal future objective of drug development research

Population of patients with given disease: all or nearly all respond to different drugs according to genotype

Segmenting into smaller markets ?

Blockbuster drug 100 – 500 m patients

- Limited pathophysiological depth of penetration for diagnostics and therapeutics
 Low complexity and specifity of diagnostics
- Limited differentation and effectiveness of therapeutics
 High range of application for individual drugs

Population medicine 10.000-100.000 patients

- Increasing pathophysiological depth of penetration for diagnostics and therapeutics approaches
- Expanding number of patients treatable by therapeutics
- Decreasing range of application for individual drugs

Personalised medicine 1- 50 patients

Novel therapeutic methods (eg, tissue engineering, stem cells) with applications limited

to individuals

Molecular diagnostics: transforming the diagnosis (Dx) and the treatment of disease (Rx)

Replacement of current empirical "one-size-fits-all" approach by rational Rx selection

- Diseases are not uniform
- Patients are not uniform

Diseases with identical symptoms may have different root causes (molecular pathologies)
 Right Rx for right disease (subtype)

Individual genetic uniqueness affects responses to Rx
Efficacy
Safety

Personalized medicine *Same data, multiple subscribers*

Pharmaceutical Medical devices

Cohort identification
Drug performance
Pharmaco-vigilance
Outcomes analysis

Specialists

- Clinical research
- Best therapy for cost
- Trial candidate selection

Laboratories

- Drug performance
- Best practices

Hospitals / ER

Pharmaco-vigilance
 Drug safety
 Regulations

Patients

Clinics

Best therapy for costDrug performanceBest practices

Hospitals

Paolo Barbanti Innovazione e sviluppo del prodotto

- New technologies (biotech, systems biology...)
- An aging population (US, Europe)
- Consumers are consolidating
 - Managed-care
 - Little room for "me-too"drugs

Increased use of drugs vs. expensive hospital care

Greater interest/access to "healthy foods"(i.e., nutraceuticals), supplements, and "total wellness"

Convergence in technology: scientific advances and new business opportunites

Paolo Barbanti Innovazione e sviluppo del prodotto

The product development value chain

New trends in Dx

Accellerated growth and expanding margins

Convergence of diagnostics and therapeutics (personalized medicine)

Value-based pricing

Drivers of new diagnostics

New targets (genomics and proteomics)
High cost of new drug development

Medical utilization

Adverse drug reactions (ADRs)

•Preventive / personalized medicine

Paolo Barbanti Innovazione e sviluppo del prodotto

Types of medical data

- lab results
- administrative orders, appointments
- images
- signals, ecg
- microbiology results
- demographic
- familiar
- history of prescriptions
- genetics

Health informatics subdivisions

Information level

(molecular, cellular, tissue, organ. patient, disease, population)

Clinical specialties or diseases

(cancer informatics, cardiovascular, ...)

User

(patient, clinical, pharma, nurse, bio)

Agent

(HMO, hospital, government, ...)

Technology

(Telemedicine, decision making, imaging, genomics)

Integration of patient data

Paolo Barbanti Innovazione e sviluppo del prodotto

ICT and Biotech

- Rapid convergence of biology and IT a reality
- Areas of knowledge generation and collection:
 - Genomics and Proteomics
 - Clinical trials
 - Libraries
- Key functional areas:
 - Data acquisition
 - Storage
 - Analysis
 - Dissemination

Key Issues: database integration, transparent accessibility, speed

DATA environment is rapidly changing

Healthcare organizations are facing a deluge of rich data that is enabling them to become more efficient, operate with greater insight and effectiveness, and deliver better service

* HP Autonomy, Transitioning to a new era of human information, 2013

** Steve Hagan, Big data, cloud computing, spatial databases, 2012

Optimal Cost Structure

Healthcare Disruption is underway

24 months

Frequency at which electronic healthcare data doubles

150+

Exabytes of available healthcare data today

80%

Of data is unstructured

\$7.2 trillion

In **global healthcare spending**; 10.6% of the global GDP

90%

Of the world's data has been created in the past 2 years.

75%+

Percentage of patients expected to use **digital health** services in the future

The Challenges of Big Data

Keeping up

There are 100,000+ clinical trials running in parallel.

A patient will generate >12 TB of personal health data in a lifetime (300 million books).

Medline: 424 million published articles in 5600 journals 1.8 million new articles published annually

80% Unstructured

A typical high-need patient has a 100+ page electronic health record.

Text where meaning is often derived from context

Images: X-rays, sonograms, electrocardiograms, magnetic resonance images, and mass spectrometry results

<u>Noisy</u>

Problems of scale: finding the signal in the noise when its buried in millions of pages across multiple silos

Humans must collect, organize data and evaluate evidence

Introduces cognitive bias

Watson for patient safety

Dashboard and Alerts for Safety Signals

*Watson Health for Patient Safety is currently in development

Components

Drug discovery, development and industry adoption

Goals and Drivers

Academia

- Knowledge
- Teaching/Training
- Research
- Research support
- Open disclosure
- Economic development
- Serve public health needs

Industry

- Profit
- Training
- Product R&D
- Growth
- Confidentiality
- ROI (stakeholders)
- Serve public health needs

Industry-academia relationships: a venture that brings significant benefit

Short term

Consultancy and research by individual scientists Industrial procurement of services (*Training, targeted contract research: problem solving; patents*)

Medium term

Corporate contributions (fellowships, targeted contract research: design and engineering, development, applied research; pre-competitive research) Cooperative research (joint research programs; R&D consortia; Joint R&D labs)

Long term

Privately funded research centres:(*multicorporate, single funder*) Long-term research contracts (*basic, fundamental, precompetitive research*) University-controlled companies to exploit research Private companies that secure patents rights for resale

Collaboration required in pharmaceutical industry

The Industry-University interface is multifaceted

- Corporate sponsored research
- Corporate collaborations
- Material and knowledge transfer
- Consulting and other public service
- IP creation and licensing
- Gifts: cash, endowed chairs, equipment, sponsorship of graduate programs
- Graduate fellowships
- Industry consortia (memberships)
- Exchange of personnel, sharing of resources
- Investment in university employee-founded startups
- Networks of service providers and capital that support entrepreneurial activities

The changing landscape and partnering implications

Environmental Factors

- Internationalization
- Consolidation
- Cost containment
- Stakeholder pressure
- Evolving technology frontier

Implications

- Novel sources of Innovation
- Increased deal Throughput
- Diverse means of engagement
- Innovative alliance models

Opportunities of greatest interest

Considerations are based on a mix of attributes and strategic interests:

- Does this opportunity complement our existing portfolio?
- •Does it offer entry into a **new area** of interest?
- Is it a novel technology to reduce attrition and increase R&D productivity?
- •Does it address an area of unmet customer need?
- •Would it be First/Best in class?
- •What is the opportunity size?

What is Technology Transfer ?

The formal transfer to the commercial sector of new innovations, discoveries and inventions resulting from intellectual pursuits, such as scientific research, conducted at universities or other research institutes.

Technology Transfer Process

<u>Three</u> major steps

- 1. Submission of an invention disclosure
- 2. Initiation of <u>intellectual property</u> protection
- 3. Formal <u>licensing</u> of the rights of an invention to industry for commercialization.

The Technology Transfer process

Paolo Barbanti Management Consulting Pharma & Biotech