Quantitative methods for economics, finance and

management

2019/2020

LAB 10

02.12.2019

Lab-10: Heteroskedasticity and Autocorrelation

 $M_{i} = \beta_{1} + \beta_{2} X_{i2} + \beta_{3} X_{i3} + \dots + \beta_{k} X_{ik} + u_{i}$ Un is THE " CLASSICAL" ERROR TERM IF: 1) E[U.1=0 #i=1,2,...N 2) $V_{22}(M_{1}) = \sigma_{u}^{2} = \sigma^{2} \quad \forall x = 1, 2, ..., N$ 3) Cov(U1,U5)=0 V1,5 WITH i = 5 IF $V_{2n}(U_{\lambda}) = \delta_{\lambda}^{2} \neq \delta_{u}^{2} = \delta^{2}$ WE Have HETEROSUEDASTICITY IF COV(ULUS) DE COV(UEUZ) 70 WE HAVE AUTO CORRECATION HOW TO DEAL WITH THEM? IN BOTH CASES WE NEED TO ADJUST THE MODEL IN DEDER TO OBTAIN THE CLASSICAL EREOR TERMS. HETEROSK. ---- WE USE WLS/GLS ESTIMATOR AUTSCORR. -> WE USE QUASI-DIFFERENCES METHOD

Lab-10: Linear regression model

Dependent Variable: CONSUMPTION Method: Least Squares Date: 12/02/18 Time: 20:23 Sample: 1 100 Included observations: 100

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C INCOME	5.668497 0.700288	1.331578 0.021752	4.256977 32.19466	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.913618 0.912737 6.666147 4354.877 -330.5879 1036.496 0.000000	Mean depen S.D. depend Akaike info c Schwarz crite Hannan-Quir Durbin-Wats	dent var ent var riterion erion nn criter. on stat	42.77938 22.56622 6.651759 6.703862 6.672846 2.566340

NOW, SUPPOSE A "LOG-LOG" SPECIFICATION; THIS IMPLIES THAT BO AND BO HAVE ELASTICITY INTERPRETATION. EXAMPLES ' IF INCOME INCREASES BY 10% THEN CONSUMPTION TACRESES BY 7% (KEEPING THE OTHER VARABLES GUSTANT)

Lab-10: Linear regression model

· R^L = 0,91 ~ 91%; MEANING THAT 91,36% OF THE TOTAL VARIATION OF THE DEPENDENT VARIABLE (CONSUMPTION) IS EXPLAINED BY THE MODEL (VARIATION OF THE FITTED VALUES) · Ho: BI= 0 VS HI: BI = 0 $\frac{f(\beta_{1})}{cauc} = \frac{\beta_{1} - \beta_{1}/H_{0}}{Se(\beta_{1})} = \frac{\beta_{1} - 0}{Se(\beta_{1})} = \frac{0,700288}{0,021752} = 32,19$ |t(B)) > t = 5% => 32, 19 > 1,96 = 2; Ho IS REJECTED AT 5% · RCI = PCI = 0,95 => STRONG LINEAR RELATIONSHIP BETWEEN CLANS IN

Lab-10: Heteroskedasticity

Considering the consumption-income model. Thus, the reference equation is

$$C_i = \beta_1 + \beta_2 I_i + u_i$$

The scatterplot between consumption and income shows the empirical relationship between the actual values.

- There is empirical evidence that the consumption variability increases with the level of income. This fact suggests the existence of heteroskedaticity.
- The condition in which some observations have a larger (or smaller) variance than others describes what is usually called heteroscedasticity phenomena.

- The White test is based on a different auxiliary regression where the squared residuals are regressed on: the model explanatory variables all their squares.
- 1. The asymptotic chi-squared White test-statistic is obtained by the product of the number of observations times the R-squared of the auxiliary regression.
- 2. The F-version for small samples is obtained by setting to zero all the explanatory variables of the auxiliary regression (i.e. by looking at the F-test for the overall significance of the auxiliary regression).

1) USE OLS TO ESTIMATE BI, BL...; THAT IS TO GET

$$\hat{\beta}_1, \hat{\beta}_2, ..., \hat{\beta}_K$$

WE THE F-TEST

•

0.210069 Mean dependent var

0.193781 S.D. dependent var

60.63236 Akaike info criterion

12.89773 Durbin-Watson stat

Schwarz criterion

Hannan-Quinn criter.

356599.4

-550.8538

0.000011

Adjusted R-squared

S.E. of regression Sum squared resid

Log likelihood

Prob(F-statistic)

F-statistic

The TEST TAKES THE FOLLOWING FORM

$$U_{x}^{2} = \delta_{1} + \delta_{2} X_{xx} + \cdots + \delta_{k} X_{xu} + \beta_{2} X_{xz}^{2} + \cdots + \beta_{u} X_{uu}^{2} + \xi_{i}$$

Ho: $\delta_{1} = \delta_{2} = \cdots = \delta_{k} = \beta_{2} = \beta_{3} = \cdots = \beta_{u} = 0$
Hn: AT LEAST ONE COEFFICIENT DIFFERENT FROM HELD
The WHITE TEST IS THE F-TEST ~ F(G, N-(2(k-1)+1))
WHERE $6 = 2(k-1) \Rightarrow \#$ of Restrictionss
 $C_{x} = \beta_{1} + \beta_{2} T_{x} + U_{x}; V_{2x}(U_{x}) = \sigma_{x}^{2} \neq \sigma^{2} \Rightarrow OLS$ estimates is not Blue.
Performed to content intermal former [Section 1]
The TEST E. BECOMES
 $U_{x}^{2} = \delta_{1} + \delta_{2} T_{x} + \beta_{2} T_{z}^{2} + \xi_{i}$
Ho: $\delta_{2} = \beta_{1} + \delta_{2} T_{x} + \beta_{2} T_{z}^{2} + \xi_{i}$
Ho: $\delta_{2} = \beta_{1} + \delta_{2} T_{x} + \beta_{2} T_{z}^{2} + \xi_{i}$
Ho: $\delta_{2} = \beta_{2} = 0$
H: $\frac{1}{2}$ AT LEAST 1 COFFF. DIFFERENT FROM ZEED

43.54877

67.52709

11.07708 11.15523

11.10871

1.995534

/iew Proc Object Print Name Freeze Representations	Estimate Forecast Stats Resids	Wald Test	x	Wald Test:	
Estimation Output Actual,Fitted,Residual ARMA Structure Gradients and Derivatives		Coefficient restrictions separated by commas (2)=(3)=0	-	Test Statistic	Value
Covariance Matrix Coefficient Diagnostics Residual Diagnostics	Std. Error t-Statistic Prob. Scaled Coefficients Confidence Intervals			F-statistic Chi-square	12.897 25.795
Stability Diagnostics	Confidence Ellipse Variance Inflation Factors Coefficient Variance Decomposition			Null Hypothesis: 0 Null Hypothesis S	C(2)=C(3)= Summary:
Log likelihood -330.5879 F-statistic 1036.496 Prob(F-statistic) 0.000000	Wald Test- Coefficient Restrictions Omitted Variables Test - Likelihood Ratio Redundant Variables Test - Likelihood Ratio	Examples $C(1)=0$ $C(3)=2*C(4)$ OK Cancel	:	Normalized Restri	iction (= 0)
	Factor Breakpoint Test			C(2)	

df Value Probability 12.89773 (2, 97) 0.0000 25.79547 2 0.0000 C(2)=C(3)=0 ummary: ction (= 0) Value Std. Err. -0.402642 0.729608 C(2) C(3) 0.012403 0.006527

Restrictions are linear in coefficients

$$F-FEST = 12,89 = WHITE TEST$$

 $P-VALLE WHITE FEST = 0.00000... <$

1% 5% LEVERS; THEREFORE: 10%

HO IS REJECTED AT 1%, 5% AND 10% LEVERS. WE HAVE HETERDS W. IN OUR MODEL.

Equation: EQ1_OLS Workfile: QMEFM_LAB9_251118_CLASS_V2::GL • ×					
View Proc Object Print Na	ame Freeze	Estimate Foreca	st Stats Resids		
Representations	l l	N			
Estimation Output					
Actual, Fitted, Residual					
ARMA Structure					
Gradients and Derivati	ves 🕨				
Covariance Matrix		Std. Error	t-Statistic	Prob.	
Coefficient Diagnostics	; ▶	1.331578	4.256977	0.0000	
Residual Diagnostics	►	Correlogra	m - Q-statistic	s	
Stability Diagnostics	▶	Correlogram Squared Residuals			
Label		Histogram - Normality Test			
S.E. of regression	6.666147	Serial Correlation LM Test Heteroskedasticity Tests			
Sum squared resid Log likelihood F-statistic Prob(F-statistic)	4354.877				
	-330.5879 [⊸] 1036.496 0.000000	Hannan-Qu Durbin-Wat	inn criter. son stat	6.672846 2.566340	

Specification Test type: Breusch-Pagan-Godfrey Harvey Glejser ARCH White Custom Test Wizard	Dependent variable: RESID^2 The White Test regresses the squa residuals on the cross product of t original regressors and a constant.	red
Heteroskedasticity Test: W	hite	

F-statistic	12.89773	Prob. F(2,97)	0.0000
Obs*R-squared	21.00686	Prob. Chi-Square(2)	0.0000
Scaled explained SS	24.01169	Prob. Chi-Square(2)	0.0000

Test Equation: Dependent Variable: RESID² Method: Least Squares Date: 12/02/18 Time: 21:49 Sample: 1 100 Included observations: 100

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	18.40369	17.58896	1.046321	0.2980
INCOME^2	0.012403	0.006527	1.900252	0.0604
INCOME	-0.402642	0.729608	-0.551861	0.5823
R-squared	0.210069	Mean dependent var		43.54877
Adjusted R-squared	0.193781	S.D. dependent var		67.52709
S.E. of regression	60.63236	Akaike info criterion		11.07708
Sum squared resid	356599.4	Schwarz criterion		11.15523
Log likelihood	-550.8538	Hannan-Quinn criter.		11.10871
F-statistic	12.89773	Durbin-Watson stat		1.995534

