Quantitative methods for economics, finance and management

2019/2020

LAB 1 (2/2) 23.09.2019

	G Group: UNTIT	, , ,		SS_V1::tim
	[VIEW FIOC Object]	BRENT SP	RAC	icet Stats 3
>	Mean	45.59263	40.00228	
>	Median	29.24000	27.59000	
	Maximum	135.5400	127.7700	
	Minimum	9.780000	9.390000	
>	Std. Dev.	33.21287	28.95885	
	Skewness	0.947297	1.153514	
	Kurtosis	2.622340	3.121792	
	Jarque-Bera	57.84773	94.51317	
	Probability	0.000000	0.000000	
	Sum	16960.46	17000.97	
	Sum Sq. Dev.	409248.2	355572.7	
	Observations	372	425	

- · DESCRIPTIVE STATISTICS ABOUT 2 VARIABLES:
 - 1) THE BRENT SPOT PRICE 2) THE RAC

· COMMENT:
$$\overline{Z}(X_{\ell}-\overline{X})=0$$
 $\overline{Z}(X_{\ell})=0$
 $\overline{Z}($

- 2) MEDIAN
- . THE MEDIAN IN A SAMPLE OF NUMBERS IS THE MIDDLE VALUE AFTER THE NUMBERS HAVE BEEN ORDERDED
- · IN A PROBABILITY DISTRIBUTION IS THE VALUE WHERE THERE IS 50% CHANGE OF BEING BELOW THE VALUE AND 50% OF BEING ABOVE
- . TO COMPUTE THE MEDIAN, WE HAVE 2 STEPS:
 - 1) SORT OUT THE OBSERVATIONS XX & XZ & XZ & X3 -- & XT

· MEASURE OF SPREAD

THE VARIANCE MEASURES HOW FAR A DATA IS Spread out. In other words, It MEASURES THE DISPERSION OF THE DATA FROM THE MEAN

THE DATA IS TO THE (TEAN)

Sol
$$(X) = V J_{X}(X) = V J_{X}(X) = J$$

The Shewness Measures The Degree of Asymmetry of the Distribution of the Secret SU
$$= 0$$
, the distribution is symmetric around the Mean > 0 , it indicates a shew to the CEFT $= 20$, $= 20$

Supporting materials

What is EViews?

- EViews is an easy-to-use statistical, econometric, and economic modeling package.
- There are three ways to work in EViews:
 - Graphical user interface (using mouse and menus/dialogs).
 - 2. Single commands (using the command window).
 - 3. Program files (commands assembled in a script executed in batch mode).

EViews Desktop

Import cross-section data from xls

Import time-series data from xls

Import panel data from xls

Output EViews (time series and cross-section data)

Histogram in EViews

