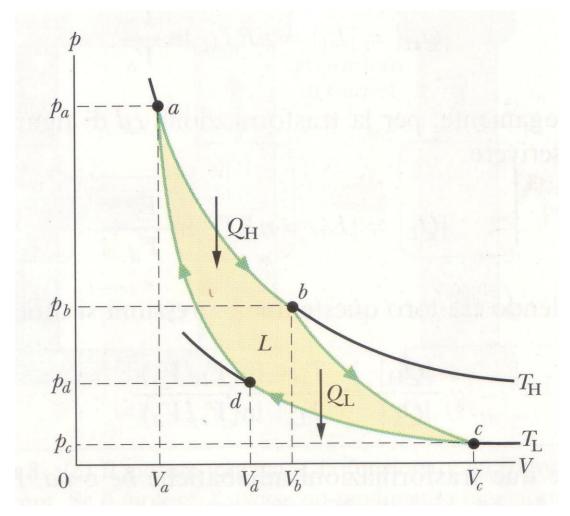
CICLI TERMODINAMICI

CICLI TERMODINAMICI

- CICLO DI CARNOT
- CICLO RANKINE
- CICLO BRAYTON
- CICLO OTTO / CICLO DIESEL

IL CICLO DI CARNOT RAPPRESENTA IL MODELLO DA PERSEGUIRE, PERCHE' A PARITA' DI TEMPERATURE ESTREME HA IL RENDIMENTO PIU' ELEVATO


GLI ALTRI CICLI SONO LE MODALITA' CON CUI, NELLA REALTA', SI E' CERCATO DI DARE RISPOSTA A QUESTA ESIGENZA

CICLO DI CARNOT

E' COSTITUITO, IN SUCCESSIONE CICLICA, DALLE SEGUENTI TRASFORMAZIONI:

- 1. ESPANSIONE ISOTERMA
- 2. ESPANSIONE ADIABATICA
- 3. COMPRESSIONE ISOTERMA
- 4. COMPRESSIONE ADIABATICA
 CHE RIPORTA IL SISTEMA NELLE CONDIZIONI
 INIZIALI

CICLO DI CARNOT

CICLO DI CARNOT – ANALISI ENERGETICA

1. ESPANSIONE ISOTERMA

- ASSORBE IL CALORE Q_H
- PRODUCE IL LAVORO L₁ = Q_H

2. ESPANSIONE ADIABATICA

- Q = 0
- PRODUCE IL LAVORO L₂ = DE = n Cv (T_H T_L)

3. COMPRESSIONE ISOTERMA

- CEDE IL CALORE QL
- ASSORBE IL LAVORO L₃ = Q_L

4. COMPRESSIONE ADIABATICA

- Q = 0
- ASSORBE IL LAVORO $L_4 = DE = n Cv (T_L T_H) = -L_2$

CONSIDERANDO IL VALORE ASSOLUTO:

$$L = L_1 + L_2 - L_3 - L_4 = L_1 - L_3 = Q_H - Q_L$$

RENDIMENTO DI UN CICLO DI CARNOT

$$e = L / Q_H = (Q_H - Q_L) / Q_H = 1 - Q_L / Q_H = 1 - T_L / T_H$$

- L = LAVORO PRODOTTO DAL SISTEMA TERMODINAMICO
- Q_H = CALORE ASSORBITO DAL SISTEMA TERMODINAMICO NELLA TRASFORMAZIONE 1 A TEMPERATURA T_H
- $Q_L = CALORE CEDUTO DAL SISTEMA TERMODINAMICO NELLA TRASFORMAZIONE 3 A TEMPERATURA T_L$

TEOREMA DI CARNOT

IL RENDIMENTO DI QUALUNQUE MACCHINA TERMICA CHE OPERA FRA DUE TEMPERATURE ESTREME, NON PUO' MAI ESSERE SUPERIORE A QUELLO DELLA MACCHINA DI CARNOT, OPERANTE FRA LE STESSE TEMPERATURE

FISSATE T_H E T_L, SI HA SEMPRE

$$e = L / Q_H < = 1 - T_L / T_H$$

TRASFORMAZIONE DI CALORE IN LAVORO

TRASFORMAZIONE ISOTERMA - PRIMO PRINCIPIO

L = Q TUTTO IL CALORE SI TRASFORMA IN LAVORO

LA TRASFORMAZIONE NON PUO' PROSEGUIRE ALL'INFINITO, PER CUI PER PRODURRE LAVORO CON CONTINUITA' OCCORRE UN CICLO

CICLO TERMODINAMICO – SECONDO PRINCIPIO

$$Q_L > 0 \rightarrow L < Q_H \rightarrow e = L/Q_H < 1$$

TEOREMA DI CARNOT

 $e = L / Q_H < = 1 - T_L / T_H$

ESEMPIO: $T_L = 27^{\circ}C = 300 \text{ K}$ $T_H = 627^{\circ}C = 900 \text{ K}$ e < = 0,6667

CICLLE MACCHINE REALI

INTERVENGONO VARI TIPI DI PERDITE (ATTRITI, PERDITE DI CALORE, CADUTE DI PRESSIONE, PERDITE NELLE MACCHINE ELETTRICHE, ECC.) E IL RENDIMENTO CALA ULTERIORMENTE

NORMALMENTE e < 0,45

PRINCIPI DI COMBUSTIONE GENERATORI DI CALORE

COMBUSTIONE

REAZIONE CHIMICA NELLA QUALE UNA SOSTANZA COMBUSTIBILE SI COMBINA (REAGISCE) CON UNA SOSTANZA COMBURENTE OD OSSIDANTE (GENERALMENTE OSSIGENO) SVILUPPANDO UNA GRANDE QUANTITA' DI CALORE

IL COMBUSTIBILE E' UNA SOSTANZA CHE, IN OPPORTUNE CONDIZIONI, E' IN GRADO DI REAGIRE CON UN COMBURENTE OD OSSIDANTE SVILUPPANDO UNA NOTEVOLE QUANTITA' DI CALORE

I COMBUSTIBILI SONO COSTITUITI ESSENZIALMENTE DA CARBONIO (C) ED IDROGENO (H). NEI COMBUSTIBILI POSSONO ESSERE PRESENTI ANCHE PICCOLE PERCENTUALI DI OSSIGENO (O), ZOLFO (S) ED AZOTO (N)

REAZIONE DI COMBUSTIONE DEL GAS METANO

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

1 MOLE DI CH_4 = 1 x 16 kg = 16 kg 2 MOLI DI O_2 = 2 x 32 kg = 64 kg 1 MOLE DI CO_2 = 1 x 44 kg = 44 kg 2 MOLI DI H_2O = 2 x 18 kg = 36 kg

1 kg CH₄ + 4 kg O₂ \rightarrow 2,75 kg CO₂ + 2,25 kg H₂O

1 kg ARIA SECCA = 0.232 kg O_2 + 0.755 kg DI N_2 + ALTRI COMPONENTI MINORI PER BRUCIARE 1 kg DI CH4 OCCORRONO 4/0.232 = 17.24 kg DI ARIA SECCA

RAPPORTO STECHIOMETRICO DI COMBUSTIONE: 17,24 kg ARIA / kg CH₄

CON UN ECCESSO D'ARIA DEL 10÷20%: → 19-20 kg ARIA / kg CH₄

POTERE CALORIFICO DI UN COMBUSTIBILE

ENERGIA TERMICA OTTENIBILE DALLA REAZIONE CHIMICA DI COMBUSTIONE DI UNA QUANTITA' UNITARIA DI COMBUSTIBILE SI MISURA IN kcal/kg - kJ/kg - kWh/kg

POTERE CALORIFICO SUPERIORE

POTERE CALORIFICO DI UN COMBUSTIBILE, CALCOLATO CONSIDERANDO L'ACQUA PRESENTE NEI FUMI ALLO STATO LIQUIDO

POTERE CALORIFICO INFERIORE

POTERE CALORIFICO DI UN COMBUSTIBILE, CALCOLATO CONSIDERANDO L'ACQUA PRESENTE NEI FUMI ALLO STATO DI VAPORE

NORMALMENTE L'ACQUA E' PRESENTE NEI FUMI COME VAPORE, PER CUI SI CONSIDERA SEMPRE IL POTERE CALORIFICO INFERIORE

POTERE CALORIFICO INFERIORE DI ALCUNI COMBUSTIBILI

CARBONE	6.000 kcal/kg	7,0 kWh/kg
GASOLIO GASOLIO	10.200 kcal/kg 8.400 kcal/litro	11,9 kWh/kg 9,8 kWh/litro
NAFTA/OLIO COMB. DENSO	9.700 kcal/kg	11,3 kWh/kg
GAS METANO PURO	8.117 kcal/Sm3	9,4 kWh/Sm3
GAS NATURALE (80-100% di metano)	8.117-8.900 kcal/Sm3	9,4 – 10,3 kWh/Sm3

LO Sm3 E' LA QUANTITA' DI GAS CHE OCCUPA IL VOLUME DI 1 m3, CON T=15°C E p=1,013 bar assoluti

GENERATORE DI CALORE

PRODUCE, E QUINDI FORNISCE IN USCITA, ENERGIA TERMICA, OTTENUTA MEDIANTE REAZIONE CHIMICA DI COMBUSTIONE DI SOSTANZE DETTE, APPUNTO, COMBUSTIBILI

RENDIMENTO DI UN GENERATORE DI CALORE

RAPPORTO FRA L'ENERGIA TERMICA PRODOTTA E QUELLA ENTRANTE (OPPURE FRA LA POTENZA TERMICA USCENTE E QUELLA ENTRANTE)

INPUT ENERGETICO DI UN GENERATORE DI CALORE

ENERGIA

E' DATA DAL PRODOTTO DELLA QUANTITA' DI COMBUSTIBILE BRUCIATA, PER IL POTERE CALORIFICO (INFERIORE) DEL COMBUSTIBILE

 $kg \times kcal/kg = kcal$

 $kg \times kWh/kg = kWh$

POTENZA

E' DATA DAL PRODOTTO DELLA PORTATA DI COMBUSTIBILE BRUCIATA, PER IL POTERE CALORIFICO (INFERIORE) DEL COMBUSTIBILE

 $kg/h \times kcal/kg = kcal/h$

 $kg/h \times kWh/kg = kW$

OUTPUT ENERGETICO DI UN GENERATORE DI CALORE

ENERGIA

E' DATA DAL PRODOTTO DELLA MASSA DI FLUIDO PRODOTTO PER LA DIFFERENZA DI ENTALPIA SPECIFICA CONFERITA AL FLUIDO

 $kg \times kcal/kg = kcal$

 $kg \times kWh/kg = kWh$

POTENZA

E' DATA DAL PRODOTTO DELLA PORTATA DI FLUIDO PRODOTTO, PER LA DIFFERENZA DI ENTALPIA SPECIFICA CONFERITA AL FLUIDO

 $kg/h \times kcal/kg = kcal/h$

 $kg/h \times kWh/kg = kW$

TIPOLOGIE DI GENERATORI DI CALORE

CALDAIE AD ACQUA CALDA

CALDAIE AD ACQUA SURRISCALDATA

GENERATORI DI VAPORE

CALDAIE AD OLIO DIATERMICO