| 
					  
					FIRST SEMESTER 
					                                                                                                                                                            | 
		
			| 
					Lecture 1 
					  | 
					Why Learning Mathematics for Economics, Finance and Management?  (Part1) 
					·         Applications in Economics 
					·         Applications in Finance 
					·         Applications in Management 
					Reference:  
					·         tbd | 
		
			| 
					Lecture 2 
					  | 
					Introductory Topics 
					·         Integer numbers and real numbers 
					·         Powers 
					·         Intervals and Inequalities 
					·         Algebra rules 
					·         Summation notation 
					·         Set theory 
					Reference:  
					·         Sydsaeter et al. 1.1, 1.2, 1.3, 1.6, 2.1, 2.2, 3.1, 3.6 | 
		
			| 
					Lecture 3 
					  | 
					Functions of One Variable I 
					·         Definitions, Domain and Range 
					·         Linear functions 
					·         Quadratic Functions 
					·         Graphs of Functions 
					·         Case Study: Supply and demand analysis 
					References:  
					·         Sydsaeter et al. 4.1, 4.2, 4.3, 4.4, 4.6 
					·         Jacques 1.5 | 
		
			| 
					Lecture 4 
					  | 
					Functions of One Variable II 
					·         Polynomials 
					·         Power functions 
					·         Exponential functions 
					·         Logartithmic functions 
					·         Case Study: Revenue, cost and profit 
					References:  
					·         Sydsaeter et al. 4.7, 4.8, 4.9,4.10 
					·         Jacques 2.2 | 
		
			| 
					Lecture 5 | 
					Properties of Functions 
					·         Shifting graphs 
					·         Inverse functions 
					·         Composite functions 
					·         Distance in the plane, circles 
					References:  
					·         Sydsaeter et al. 5.1, 5.2, 5.3, 5.4, 5.5 | 
		
			| 
					Lecture 6 | 
					Differentiation I 
					·         Slopes of curves 
					·         Tangents and derivatives 
					·         Increasing and decreasing functions 
					·         Rates of change 
					·         Limits: an introduction 
					·         Case Study: Marginal functions 
					References:  
					·         Sydsaeter et al. 6.1, 6.2, 6.3, 6.4, 6.5 
					·         Jacques 4.3 | 
		
			| 
					Lecture 7 | 
					Differentiation II 
					·         Rules for differentiation 
					·         Sum, Products and Quotients 
					·         Chain Rule 
					References:  
					·         Sydsaeter et al. 6.6, 6.7, 6.8 | 
		
			| 
					Lecture 8 | 
					Differentiation III 
					·         Higher order derivatives 
					·         Derivatives of Exponential functions 
					·         Derivatives of Logarithmic functions 
					References:  
					·         Sydsaeter et al. 6.9, 6.10, 6.11 | 
		
			| 
					Lecture 9 
					  | 
					Derivatives in Use I 
					·         Implicit differentiation 
					·         Differentiating the inverse 
					·         Case study: Supply and demand 
					References:  
					·         Sydsaeter et al. 7.1, 7.2, 7.3 | 
		
			| 
					Lecture 10 
					  | 
					Derivatives in Use II 
					·         Linear Approximation 
					·         Polynomial Approximation 
					·         Taylor’s Formula 
					·         Case Study: Elasticity 
					References:  
					·         Sydsaeter et al. 7.4, 7.5, 7.6 
					·         Jacques 4.5 | 
		
			| 
					Lecture 11 
					  | 
					Derivatives in Use III 
					·         Continuity 
					·         Limits 
					·         Intermediate value theorem 
					·         Newton’s method 
					·         Infinite sequences 
					·         L’Hôpital’s rule 
					References:  
					·         Sydsaeter et al. 7.8, 7.9, 7.10, 7.11, 7.12 | 
		
			| 
					Lecture 12 | 
					Single Variable Optimization I 
					·         Simple Tests for Extrema 
					·         Convex and concave functions 
					·         Case study: Harvesting 
					References:  
					·         Sydsaeter et al. 8.1, 8.2, 8.3 | 
		
			| 
					Lecture 13 | 
					Single Variable Optimization II 
					·         Extreme value theorem 
					·         Mean value theorem 
					References:  
					·         Sydsaeter et al. 8.4, 8.5 | 
		
			| 
					Lecture 14 | 
					Single Variable Optimization III 
					·         Local extreme points 
					·         Inflection points 
					·         Case Study: Optimisation in economic functions 
					References:  
					·         Sydsaeter et al. 8.6, 8.7 
					·         Jacques 4.6 | 
		
			| 
					Lecture 15 
					  | 
					Integration I 
					·         Indefinite integrals 
					·         Definitions 
					·         General rules of integration 
					References:  
					·         Sydsaeter et al. 9.1 
					·         Jacques 6.1 | 
		
			| 
					Lecture 16 
					  | 
					Integration II 
					·         Definite integrals 
					·         Area of definite integrals 
					·         Properties of definite integrals 
					·         The Riemann integral 
					·         Case Study: Consumer/Producer Surplus 
					References:  
					·         Sydsaeter et al. 9.2, 9.3, 9.4 
					·         Jacques 6.2.1, 6.2.2 | 
		
			| 
					Lecture 17 | 
					Integration III 
					·         Integration by parts 
					·         Integration by substitution 
					References:  
					·         Sydsaeter et al. 9.5, 9.6 
					·         Dowling 12.8, 12.9 | 
		
			| 
					Lecture 18 | 
					Integraion IV 
					·         Infinte intervals 
					·         A glimpse at differential equations 
					·         Case study: Logistic growth 
					References:  
					·         Sydsaeter et al. 9.7, 9.8 
					·         Jacques 9.2 | 
		
			| 
					Lecture 19 | 
					Matrix Algebra I 
					·         Description of matrices 
					·         Row vectors, Columns vectors 
					·         Basic Matrix operations 
					References:  
					·         Sydsaeter et al. 15.1, 15.2 
					·         Jacques 7.1.1, 7.1.2, 7.1.3 | 
		
			| 
					Lecture 20 | 
					Matrix Algebra II 
					·         Matrix multiplication 
					·         Rules matrix multiplication 
					·         Transpose 
					References:  
					·         Sydsaeter et al. 15.3, 15.4, 15.5 
					·         Jacques 7.1.4 | 
		
			| 
					Lecture 21 | 
					Matrix Algebra III 
					·         Gaussian elimination 
					References:  
					·         Sydsaeter et al. 15.6 
					·         Dowling 6.5 | 
		
			| 
					Lecture 22 | 
					Matrix Algebra IV 
					·         Determinants 
					·         Expansion by cofactors 
					·         Cramer’s Rule 
					·         Case study: The Leontief model 
					References:  
					·         Sydsaeter et al. 16.1, 16.2, 16.3, 16.4, 16.8 
					·         Jacques 7.3 | 
		
			| 
					Lecture 23 | 
					Matrix Algebra V 
					·         Inverse of a matrix 
					·         Properties of the Inverse 
					·         Solving Equations by matrix inversion 
					References:  
					·         Sydsaeter et al. 16.6, 16.7 
					·         Jacques 7.2 | 
		
			| 
					Lecture 24 | 
					Vector Algebra 
					·         Operations, Inner Product 
					·         Geometric interpretation 
					·         Cauchy-Schwartz inequality 
					·         Orthogonality 
					References:  
					·         Sydsaeter et al. 15.7, 15.8, 15.9 
					·         Jacques 4.6 |