FIRST SEMESTER
|
Lecture 1
|
Why Learning Mathematics for Economics, Finance and Management? (Part1)
· Applications in Economics
· Applications in Finance
· Applications in Management
Reference:
· tbd
|
Lecture 2
|
Introductory Topics
· Integer numbers and real numbers
· Powers
· Intervals and Inequalities
· Algebra rules
· Summation notation
· Set theory
Reference:
· Sydsaeter et al. 1.1, 1.2, 1.3, 1.6, 2.1, 2.2, 3.1, 3.6
|
Lecture 3
|
Functions of One Variable I
· Definitions, Domain and Range
· Linear functions
· Quadratic Functions
· Graphs of Functions
· Case Study: Supply and demand analysis
References:
· Sydsaeter et al. 4.1, 4.2, 4.3, 4.4, 4.6
· Jacques 1.5
|
Lecture 4
|
Functions of One Variable II
· Polynomials
· Power functions
· Exponential functions
· Logartithmic functions
· Case Study: Revenue, cost and profit
References:
· Sydsaeter et al. 4.7, 4.8, 4.9,4.10
· Jacques 2.2
|
Lecture 5
|
Properties of Functions
· Shifting graphs
· Inverse functions
· Composite functions
· Distance in the plane, circles
References:
· Sydsaeter et al. 5.1, 5.2, 5.3, 5.4, 5.5
|
Lecture 6
|
Differentiation I
· Slopes of curves
· Tangents and derivatives
· Increasing and decreasing functions
· Rates of change
· Limits: an introduction
· Case Study: Marginal functions
References:
· Sydsaeter et al. 6.1, 6.2, 6.3, 6.4, 6.5
· Jacques 4.3
|
Lecture 7
|
Differentiation II
· Rules for differentiation
· Sum, Products and Quotients
· Chain Rule
References:
· Sydsaeter et al. 6.6, 6.7, 6.8
|
Lecture 8
|
Differentiation III
· Higher order derivatives
· Derivatives of Exponential functions
· Derivatives of Logarithmic functions
References:
· Sydsaeter et al. 6.9, 6.10, 6.11
|
Lecture 9
|
Derivatives in Use I
· Implicit differentiation
· Differentiating the inverse
· Case study: Supply and demand
References:
· Sydsaeter et al. 7.1, 7.2, 7.3
|
Lecture 10
|
Derivatives in Use II
· Linear Approximation
· Polynomial Approximation
· Taylor’s Formula
· Case Study: Elasticity
References:
· Sydsaeter et al. 7.4, 7.5, 7.6
· Jacques 4.5
|
Lecture 11
|
Derivatives in Use III
· Continuity
· Limits
· Intermediate value theorem
· Newton’s method
· Infinite sequences
· L’Hôpital’s rule
References:
· Sydsaeter et al. 7.8, 7.9, 7.10, 7.11, 7.12
|
Lecture 12
|
Single Variable Optimization I
· Simple Tests for Extrema
· Convex and concave functions
· Case study: Harvesting
References:
· Sydsaeter et al. 8.1, 8.2, 8.3
|
Lecture 13
|
Single Variable Optimization II
· Extreme value theorem
· Mean value theorem
References:
· Sydsaeter et al. 8.4, 8.5
|
Lecture 14
|
Single Variable Optimization III
· Local extreme points
· Inflection points
· Case Study: Optimisation in economic functions
References:
· Sydsaeter et al. 8.6, 8.7
· Jacques 4.6
|
Lecture 15
|
Integration I
· Indefinite integrals
· Definitions
· General rules of integration
References:
· Sydsaeter et al. 9.1
· Jacques 6.1
|
Lecture 16
|
Integration II
· Definite integrals
· Area of definite integrals
· Properties of definite integrals
· The Riemann integral
· Case Study: Consumer/Producer Surplus
References:
· Sydsaeter et al. 9.2, 9.3, 9.4
· Jacques 6.2.1, 6.2.2
|
Lecture 17
|
Integration III
· Integration by parts
· Integration by substitution
References:
· Sydsaeter et al. 9.5, 9.6
· Dowling 12.8, 12.9
|
Lecture 18
|
Integraion IV
· Infinte intervals
· A glimpse at differential equations
· Case study: Logistic growth
References:
· Sydsaeter et al. 9.7, 9.8
· Jacques 9.2
|
Lecture 19
|
Matrix Algebra I
· Description of matrices
· Row vectors, Columns vectors
· Basic Matrix operations
References:
· Sydsaeter et al. 15.1, 15.2
· Jacques 7.1.1, 7.1.2, 7.1.3
|
Lecture 20
|
Matrix Algebra II
· Matrix multiplication
· Rules matrix multiplication
· Transpose
References:
· Sydsaeter et al. 15.3, 15.4, 15.5
· Jacques 7.1.4
|
Lecture 21
|
Matrix Algebra III
· Gaussian elimination
References:
· Sydsaeter et al. 15.6
· Dowling 6.5
|
Lecture 22
|
Matrix Algebra IV
· Determinants
· Expansion by cofactors
· Cramer’s Rule
· Case study: The Leontief model
References:
· Sydsaeter et al. 16.1, 16.2, 16.3, 16.4, 16.8
· Jacques 7.3
|
Lecture 23
|
Matrix Algebra V
· Inverse of a matrix
· Properties of the Inverse
· Solving Equations by matrix inversion
References:
· Sydsaeter et al. 16.6, 16.7
· Jacques 7.2
|
Lecture 24
|
Vector Algebra
· Operations, Inner Product
· Geometric interpretation
· Cauchy-Schwartz inequality
· Orthogonality
References:
· Sydsaeter et al. 15.7, 15.8, 15.9
· Jacques 4.6
|