Metodi Matematici per le applicazioni industriali
Versione originale pubblicata
Corso di Laurea Specialistica in Ingegneria Gestionale per la Produzione Industriale - classe 34/S 6° Anno Primo Ciclo Semestrale
Docenti
COLICCHIA CLAUDIA, Lezioni
GAMBARDELLA LUCA MARIA, Lezioni
ROSSIGNOLI CHIARA, Lezioni
STROZZI FERNANDA, Titolare
BORGONOVO EMANUELE, Lezioni
Obiettivi del corso
Uno degli obiettivi è quello di far conoscere agli studenti alcuni i modelli discreti lineari e non lineari usando sistemi di equazioni alle differenze finite. Gli studenti impareranno ad analizzare le soluzioni dal punto di vista quantitativo e qualitativo. In particolare studieranno modelli di gestione delle scorte tra cui il Beer Game con il quale si può simulare il fenomeno del Bullwhip e modelli economici, tra cui Stratagem-2, che descrive il fenomeno del Long Wave. Le soluzioni dei modelli considerati saranno rappresentate graficamente usando Matlab.
 
Un altro obiettivo del corso è quello di introdurre i metodi di ottimizzazione  intera, non lineare, lineare stocastica ed alcuni metodi euristici tra cui gli algoritmi genetici e i metodi ant colony. I metodi saranno applicati a problemi di gestione delle scorte.  Verranno utilizzati l’ Optimization Toolbox e il Genetic Algorithm and Direct Search Toolbox di Matlab.
 
Il corso inoltre si propone di fornire agli studenti gli strumenti per la soluzione di problemi di Ricerca Operativa con particolare attenzione alle decisioni operative industriali. Si forniscono elementi di Teoria delle Decisioni in presenza di incertezza e di obiettivi molteplici. Viene discussa la soluzione di problemi concernenti scelte gestionali in situazioni con e senza rischio operativo, tramite l'uso di Diagrammi di Influenza e Alberi delle Decisioni. Saranno poi affrontati problemi di Affidabilità, con particolare attenzione alla costruzione di modelli di Probabilistic Risk Assessment per l'ottimizzazione delle manutenzioni e problemi di ottimizzazione stocastica con misure coerenti di rischio. Il corso alternerà sezioni teoriche all'analisi di esempi e casi-studio affrontati nella pratica industriale.
 
Precompetenze
Ricerca Operativa
Programma
1 - Sistemi dinamici discreti ed equazioni alle differenze finite
2 - Sistemi lineari del 1° e 2° ordine lineari:
3 - Sistemi non lineari:
4 - Equazione logistica, sistema di Henon, modello di Lotka-Volterra
5 - Studio qualitativo dei sistemi dinamici discreti
6 - Modello matematico del Beer Game
7 - Modello matematico del Long Wave
8- Uso delle Markov Chain per modellizzare la dinamica su una catena logistica
9 - Programmazione non lineare: introduzione ed esempi.
10 - Programmazione non lineare: metodi di soluzione
11 - Programmazione lineare stocastica
12 - Optimization Toolbox
13 - Algoritmi genetici e Genetic Alghorithm Toolbox
14- Ottimizzazione della distribuzione secondaria
15- Teoria delle reti complesse ed utilizzo di Pajek
           
16. Problemi Operativi:
- Diagrammi di Influenza e Alberi delle Decisioni
- L'approccio Bayesiano
- Preferenze multiple in presenza di certezza e incertezza
- Applicazioni all'ottimizzazione di decisioni operative e manageriali in impianti industriali

17. Applicazioni Affidabilistiche:
- La Funzione Struttura
- La Funzione Energia
- Applicazione delle Catene di Markov
- L'Ottimizzazione delle Manutenzioni: metodi analitici e numerici
 
Modalitą d'esame
L'esame finale consiste in una prova scritta.
Bibliografia
Testi di riferimento
Materiale didattico a cura dei docenti
 
Testi di approfondimento
Goldberg S., Introduction to difference Equations, Dover Publications, 1986
Shone R., Economics Dynamics, Cambridge University Press, 1997
Wiston W.L., Operations Research, Duxbury Press, Belmont 1993
 Clemen R., Making Hard Decisions: An introduction to Decision Analysis, Duxbury Press, Belmont CA, USA, 1998
 
 
 
Vai alla versione aggiornata